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ABSTRACT

This submission for MIREX 2012 utilizes a shift-invariant
latent variable model for multiple-F0 estimation and note
tracking. It extends the shift-invariant probabilistic latent
component analysis (SI-PLCA) method and employs sev-
eral note templates from multiple orchestral instruments.
By incorporating shift-invariance into the model along with
the constant-Q transform as a time-frequency representa-
tion, tuning changes and frequency modulations such as
vibrato can be better supported. Three variants of the sys-
tem are utilized, one trained on orchestral instruments for
multiple-F0 estimation, one trained on orchestral instru-
ments plus piano for note tracking, and a final one trained
on piano templates for piano-only note tracking.

1. INTRODUCTION

Automatic music transcription is the process of converting
an audio recording into a symbolic representation, such as
a piano-roll, a MIDI file or a music sheet. The creation of
a system able to transcribe music produced by multiple in-
struments with a high level of polyphony continues to be an
open problem in the literature, although monophonic pitch
transcription is largely considered to be a solved problem.
For a comprehensive overview on transcription approaches
the reader is referred to [7], while a more recent overview
of multiple-F0 estimation approaches can be found in [8].

Here, a system for automatic transcription of polyphonic
music is utilized, which was first introduced in [2]. The
system extends the shift-invariant probabilistic latent com-
ponent analysis (SI-PLCA) method of [11]. This model
is able to support the use of multiple pitch templates ex-
tracted from multiple sources. Using a log-frequency rep-
resentation and frequency shifting, detection of notes that
are non-ideally tuned, or that are produced by instruments
that exhibit frequency modulations is made possible. Spar-
sity is also enforced in the model, in order to further con-
strain the transcription result and the instrument contribu-
tion in the production of pitches. It should be noted that
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Figure 1. Diagram for the proposed polyphonic transcrip-
tion system.

this model was submitted by the authors for the MIREX
2011 evaluation [1], using a different set of instrument
templates, model parameters, and a different note tracking
procedure.

2. TRANSCRIPTION SYSTEM

The goal of the utilized transcription system is to provide
a framework that supports multiple templates per pitch, in
contrast to the relative pitch tracking method in [9], as well
as multiple templates per musical instrument. In addition,
the contribution of each instrument source is not constant
for the whole recording as in [9], but is time-dependent.
Also, its goal is to exploit the benefits given by a shift-
invariant model coupled with a log-frequency representa-
tion, in contrast to the transcription method in [6], for de-
tecting notes that exhibit frequency modulations and tun-
ing changes.

In subsection 2.1, the extraction of pitch templates for
various instruments is presented. The main transcription
model is presented in subsection 2.2, while the system vari-
ants used for evaluation are discussed in subsection 2.3. A
diagram of the proposed transcription system is depicted
in Fig. 1.

2.1 Extracting Pitch Templates

Firstly, spectral templates are extracted for various instru-
ments, for each note, using their whole note range. Iso-
lated note samples from three different piano types were
extracted from the MAPS dataset [4] and templates for
other orchestral instruments were extracted from mono-
phonic recordings from the RWC database [5]. For extract-
ing the note templates, the constant-Q transform (CQT)
was computed [10] with spectral resolution of 60 bins per
octave. Afterwards, the standard PLCA model of [11] us-



Instrument Lowest note Highest note
Bassoon 34 72

Cello 26 81
Clarinet 50 89

Flute 60 96
Guitar 40 76
Horn 41 77
Oboe 58 91
Piano 21 108

Tenor Sax 44 75
Violin 55 100

Table 1. MIDI note range of the instrument templates used
in the transcription system.

ing only one component z was employed in order to extract
the spectral template P (ω|z), where ω is the log-frequency
index. In Table 1, the pitch range of each instrument used
for template extraction is shown.

2.2 Transcription Model

Utilizing the extracted instrument templates and by extend-
ing the shift-invariant PLCA algorithm, a model is pro-
posed which supports the use of multiple pitch and instru-
ment templates in a convolutive framework, thus support-
ing tuning changes and frequency modulations. By consid-
ering the input CQT spectrum as a probability distribution
P (ω, t), the proposed model can be formulated as:

P (ω, t) = P (t)
∑
p,s

P (ω|s, p)∗ωP (f |p, t)P (s|p, t)P (p|t)

(1)
where P (ω|s, p) is the spectral template that belongs to in-
strument s and MIDI pitch p = 21, . . . , 108, P (f |p, t) is
the time-dependent impulse distribution that corresponds
to pitch p, P (s|p, t) is the instrument contribution for each
pitch in a specific time frame, and P (p|t) is the pitch prob-
ability distribution for each time frame.

By removing the convolution operator, the model of (1)
can be expressed as:

P (ω, t) = P (t)
∑
p,f,s

P (ω−f |s, p)P (f |p, t)P (s|p, t)P (p|t)

(2)
In order to only utilize each template P (ω|s, p) for detect-
ing the specific pitch p, the convolution of P (ω|s, p) ∗ω
P (f |p, t) takes place using an area spanning one semitone
around the ideal position of p. Since 60 bins per octave are
used in the CQT spectrogram, f has a length of 5.

The various parameters in (1) can be estimated using
iterative update rules derived from the EM algorithm. For
the expectation step the update rule is:

P (p, f, s|ω, t) =
P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)∑
p,f,s P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)

(3)

For the maximization step, the update equations for the
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Figure 2. (a) The transcription matrix P (p, t) of the first
10s of the MIREX woodwind quintet. (b) The pitch ground
truth of the same recording. The abscissa corresponds to
10ms.

proposed model are:

P (ω|s, p) =
∑
f,t P (p, f, s|ω + f, t)P (ω + f, t)∑
ω,t,f P (p, f, s|ω + f, t)P (ω + f, t)

(4)

P (f |p, t) =
∑
ω,s P (p, f, s|ω, t)P (ω, t)∑
f,ω,s P (p, f, s|ω, t)P (ω, t)

(5)

P (s|p, t) =
∑
ω,f P (p, f, s|ω, t)P (ω, t)∑
s,ω,f P (p, f, s|ω, t)P (ω, t)

(6)

P (p|t) =
∑
ω,f,s P (p, f, s|ω, t)P (ω, t)∑
p,ω,f,s P (p, f, s|ω, t)P (ω, t)

(7)

It should be noted that since the instrument-pitch tem-
plates have been extracted during the training stage, the up-
date rule for the templates (4) is not used, but is included
for the sake of completeness. Using these constant tem-
plates, convergence is quite fast, usually requiring 10-20
iterations. The resulting piano-roll transcription matrix is
given by:

P (p, t) = P (t)P (p|t) (8)

In Fig. 2, the transcription matrix P (p, t) for an excerpt of
the MIREX multi-F0 woodwind quintet recording can be
seen, along with the corresponding pitch ground truth.

In order for the algorithm to provide as meaningful so-
lutions as possible, sparsity is encouraged on transcription
matrix P (p|t), expecting that only few notes are present at
a given time frame. In addition, sparsity can be enforced
to matrix P (s|p, t), meaning that for each pitch at a given
time frame, only a few instrument sources contributes to its
production. The same technique used in [6] was employed
for controlling sparsity, by modifying the update equations



(6) and (7):

P (s|p, t) =

(∑
ω,f P (p, f, s|ω, t)P (ω, t)

)α
∑
s

(∑
ω,f P (p, f, s|ω, t)P (ω, t)

)α (9)

P (p|t) =

(∑
ω,f,s P (p, f, s|ω, t)P (ω, t)

)β
∑
p

(∑
ω,f,s P (p, f, s|ω, t)P (ω, t)

)β (10)

By setting α, β > 1, the entropy in matrices P (s|p, t) and
P (p|t) is lowered and sparsity is enforced.

Finally, note events are extracted by performing thresh-
olding on P (p, t) followed by minimum duration pruning,
set to 50ms as in [3].

2.3 System Variants

Three variants of the system are utilized for the MIREX
2012 evaluation; one trained on orchestral instruments only
for the multiple-F0 estimation task (BD1), one trained on
orchestral instruments plus piano for the note tracking task
(BD2), and a system trained on the three sets of piano tem-
plates for the piano-only note tracking task (BD3). In all
cases, β = 1.1, while α = 1.3 for BD1 and BD2 and 1.0
for BD3. For computational speed purposes, the number
of iterations in all variants was set to 12.

3. RESULTS

• For the Multiple Fundamental Frequency Estimation task,
the submitted system (BD1) ranked 2nd out of 4 groups,
reporting an accuracy of 57.9% and a chroma accuracy
of 60.3%. Compared to the system submitted for the
MIREX 2011 task [1] this system reports an accuracy
increase of +0.5%.

• For the Note Tracking task, the submitted system (BD2)
ranked 3rd out of 6 groups. Compared to last year’s sub-
mission [1], there is an improvement of +2.6% in terms
of onset-offset F-measure.

• For the Piano-only Note Tracking task, the submitted
system (BD3) ranked 2nd out of 6 groups. Compared
to last year’s submission [1], there is an improvement of
+7.2% in terms of onset-offset F-measure.
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