
TRANSCRIBING MULTI-INSTRUMENT POLYPHONIC MUSIC WITH
TRANSFORMED EIGENINSTRUMENT WHOLE-NOTE TEMPLATES

Zhuo Chen
LabROSA, Columbia University
zc2204@columbia.edu

Graham Grindlay
LabROSA, Columbia University

grindlay@ee.columbia.edu

Daniel P.W. Ellis
LabROSA, Columbia University
dpwe@ee.columbia.edu

ABSTRACT

We present a system for the transcription of polyphonic
music recordings to recover both the notes played and the
instruments responsible for each note. In our framework,
the spectrogram of the music is viewed as the superposi-
tion of note events, each characterized by an onset time
and pitch, an instrument (described by a vector of eigenin-
strument weights that combine instrument model bases to
match a particular source in the mixture), and per-note
transformation parameters that take a duration- and decay-
normalized note template and extend it to match the actual
duration and dynamics of each individual note. Transcrip-
tion is achieved through an EM-like iterative estimation
scheme. Initializing this estimation using a rough sepa-
ration of sources from a frame-based transcription system
gives stable and accurate results that directly describe the
audio at a note, rather than a frame, level, with each note
attributed to a particular instrument. This approach signif-
icantly improves transcription accuracy over a frame-level
system, apparently because the transcription constrains each
note to obey the dynamics encoded in the templates. Note-
level transcription accuracy on real woodwind excerpts from
the MIREX Multiple F0 evaluation improves from 64%
(frame-level) to 67%; for the more temporally-structured
notes in the RWC piano examples, accuracy improves from
70% to 79%, with dramatic reductions in false alarms.

Keywords: Polyphonic, Note-level transcription, Eigenin-
struments

1. INTRODUCTION

Music transcription is one of the oldest and most heavily
studied problems in Music Information Retrieval (MIR).
Current work in this area is focused on two main areas: one
is improving the signal processing and representation to
better isolate notes as spectral peaks that can be associated
with particular f0 and instrument hypotheses (e.g., [1, 2]).
The other thread is centered on machine learning, with sys-
tems that match unknown signals against labeled spectral
templates that have been learned from training examples
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(e.g., [3–5]).
Almost all current systems are frame-based, perform-

ing the bottom level of analysis against individual spectral
slices derived from short time frames. Since note events
typically last for many frames, temporal continuity is intro-
duced by some higher-level processing – most frequently
via a hidden Markov model (HMM) [3, 4].

In this work, however, we perform transcription using
note-level templates, which are made specific to individual
instruments via an eigeninstrument decomposition. Such
templates describe the behavior of each note across mul-
tiple frames, directly providing additional detail and con-
straints when compared to frame-by-frame analysis. This
work brings together three techniques: first, different in-
struments in a recording of an ensemble are individually
modeled as points in an eigeninstrument model space, as in
[8]. The single-frame templates of that system are replaced
by whole-note templates covering multiple frames, neces-
sitating the introduction of convolutive NMF (CNMF, [6]).
However, to allow notes that differ only in duration to map
back to the same template, we introduce a parametric trans-
formation step, controlling the spectral evolution and am-
plitude envelope. In addition to this basic model, we dis-
cussed how we can induce sparsity in the resulting solu-
tions.

2. THE TRANSCRIPTION SYSTEM

2.1 Note-level eigeninstrument transcription system

The transcription system of [8] used the interpretation of a
spectrogram as a distribution to perform instrument-dependent
transcription using single spectral slices as templates, each
formed from an eigeninstrument basis to match particular
instruments in a recording. We extend this using note-level
(multiple-slice) eigeninstrument templates:

P̂ (f, t) =
∑

z,p,k,d,s,t0,tl

P (f |z, p, k)P (k|s)P (s)P (t0|s)

· P (p|t0, s)P (d|p, t0, s)P (z, tl|d, p, s)P (tl, t|t0) (1)

P (f |z, p, k) are the underlying note templates expressed
as functions of a normalized time index z, one for every
pitch p and eigenistrument basis k. s indexes the sources
in the mixture, with P (k|s) as the eigeninstrument coef-
ficients matching that source. P (p|t0, s) is the “activa-
tion” of source s producing a note of pitch p starting at



time t0, with P (d|p, t0, s) being the corresponding dis-
tribution across the set of transformations indexed by d,
which directly specifies the duration of the note. Then,
P (z, tl|d, p, s) provides the transformation, relating the nor-
malized time index z to the true onset-relative time index
tl. P (tl, t|t0) = δ(t − t0 − tl) provides the deterministic
link between the time indices required for the convolution,
and the remaining values are marginals needed to complete
the equation.

2.1.1 From transformation to time-warping

Introducing transformations allows us to estimate transform-
invariant templates for particular notes regardless of dura-
tion. However, estimating a full P (z, tl|d) for every d in-
troduces a lot of parameters, leading to convergence prob-
lems and poor results. In fact, to connect real notes of dif-
ferent durations to a single template, we anticipate a fairly
restricted range of mappings, corresponding to a time warp
and an amplitude decay. We can thus devise a parametric
form for the transformation matrix.

One possible model for musical notes consists of a rela-
tively invariant onset, followed by a decay that depends on
the overall duration of the note. Matching notes of varying
durations can be accomplished by a simple time warp, but
the warp needs to be nonlinear to provide nonuniformity
across onset and decay; we use two parameters, described
below. In addition to warping the timebase of each tem-
plate, we also need a mechanism to achieve the decay in
amplitude: the template is normalized in each time scale,
and the note event P (p|t0, s) provides only a global ampli-
tude scaling. Thus, we use a third parameter to control the
amplitude decay. The parametric transformation is thus:

P (z, tl|d, p, s) = P (z|d, tl, s) · P (tl|d, p, s) (2)

Henceforth we will drop the dependence on source s, which
is implicit in the choice of parameters. The first term pro-
vides the time warping. It has two parameters: γ controls
how “sharply” the transitions between states occur, and a
determines the overall warp within a duration d:

P (z|d, tl) =
1

N1
exp{−γ(z − 4Fa(tl))

2} (3)

Fa(tl) =
1− atl/d

1− a
(4)

where N1 =
∑
z exp−γ(z − 4Fa(tl))

2 normalizes the
result to a true distribution. See figure 1 for examples of
transforms for several values of γ and a.

The second term provides an overall amplitude decay
according to a single parameter, b:

P (tl|d, p) =
1

N2
exp{−Fb(p)

tl
d
} (5)

Fb(p) = − ln(b)+(0.03b3−0.12b2+0.15b+0.05)p (6)

where N2 =
∑
tl
exp{−Fb(p)tl/d} again normalizes the

distribution. Blown and bowed instruments typically do
not have an exponential decay of energy through the note,

which results in a very small value for Fb (i.e., b close to
1). For plucked and struck instruments, even within a sin-
gle instrument the decay time is generally inversely pro-
portional to pitch; this is captured by the dependence on
p of Fb, which is empirically fit to our data by the shown
polynomial. Figure 1 also shows several values for the de-
cay function, including two pitch values for each example.

2.1.2 Parameter estimation

We solve for the unknown terms in (1) and the parameters
a, b and γ from (3)–(5) with an EM-like iterated algorithm.
There are two steps in our algorithm: firstly, P (d|p, t0, s),
P (s), P (t0|s), P (p|t0, s) and P (k|s) are updated follow-
ing a standard EM procedure. In the E step, the expectation
of hidden parameters R(s, k, p, t0, d|f, t) is calculated:

R(s, k, p, t0, d|f, t) =
1

P̂ (f, t)

∑
z,tl

P (f |z, p, k)P (k|s)P (s)P (t0|s)P (p|t0, s)

· P (d|p, t0, s)P (z|d, tl, s)P (tl|d, p, s)P (tl, t|t0) (7)

The M step maximizes the complete likelihood:∑
f,t

V (f, t)
∑

s,k,t0,p,d

R(s, k, p, t0, d|f, t)log(P̂ (f, t)) (8)

giving the following update rules:

P (k|s) = 〈RV 〉k|s P (s) = 〈RV 〉s
(9)

P (t0|s) = 〈RV 〉t0|s P (p|t0, s) = 〈RV 〉p|t0,s
(10)

P (d|p, t0, s) = 〈RV 〉d|p,t0,s P (f |z, p, k) = 〈RV 〉f |z,p,k
(11)

In (9)–(11), 〈•〉x|y means the summation over all vari-
ables except x and y, followed by the normalization on x.
V is the spectrogram of the input signal.

In the second step, the parameters a, b and γ are found
by maximizing likelihood

L =
∑
f,t

V (f, t)log(P̂ (f, t)) (12)

through gradient descent:

as = as +
∂L

∂as
bs = bs +

∂L

∂bs
γs = γs +

∂L

∂γs
(13)

which converges in our experience after 30 iterations. Fi-
nally, note-level transcripts are obtained by thresholding

P (p, t0|s) = P (t0|s)P (p|t0, s) (14)

Frame-level results can also be obtained by thresholding

P (p, t|s) =
∑

z,f,k,d,t0,tl

P (f |z, p, k)P (k|s)P (t0|s)

·P (p|t0, s)P (d|p, t0, s)P (z|d, tl, s)P (tl|d, p, s)P (tl, t|t0)
(15)
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Figure 1. Examples of the parametric transformation matrix for several different values of γ, a, and b as indicated on
the figure. The first column shows the decay envelope for two different pitches, the second column shows the time warp
trajectory, and the third column shows the resulting transformation matrix P (z, tl|d, p, s).

2.2 Forming eigeninstruments

Following [8], we build a “super-vector” of instrument pa-
rameters for each training instrument using the templates
learned by (11) and the parameters from (13). We then
use NMF to extract a set of eigeninstrument model-space
bases.

2.3 Sparsity

Since our system is note-based, we want each note rep-
resented by single note-template, rather than a combina-
tion of shorter ones. For example, if a note can be repre-
sented by the concatenation of ten short patches or single
longer patch, we would prefer the latter since it has a much
clearer physical meaning. We encourage this with spar-
sity constraints on three terms in our system: P (d|p, s, t0),
P (p|s, t0), and P (t0|s). Sparsity on P (d|p, s, t0) discour-
ages the overlapping of patches of different durations, which
would otherwise tend to be equally-good matches at least
for the onsets of each note. The sparsity on P (p|s, t0) tries
to minimize the number of fundamental pitches used to ex-
plain a given set of harmonics (to avoid the introduction
of notes rooted on harmonics). Sparsity on P (t0|s) sim-
ply prefers fewer onset events per instrument, to avoid the
concatenation of shorter patches in the reconstruction.

[7] provides one route to sparsity. The update rules for
P (p|s, t0) and P (d|p, s, t0) are changed to:

P (p|s, t0) = 〈(RV )
α〉p|s,t0 (16)

P (d|s, p, t0) = 〈(RV )
β〉d|s,p,t0 (17)

Larger values of α and β above 1 result in sparser solu-
tions. We found 1.2 to be a good value for both parameters.

For P (t0|s), we adopt the entropic prior from [9, 10]:

P (ps,t0 |β) ∝ exp(β
∑
t0

ps,t0 log(ps,t0)) β > 0 (18)

Since the entropic prior is not conjugate to multinomial
distribution, we follow [9] and obtain the final update rule

for P (t0|s) by iterating the two relations:

h = 〈p
ν
ν−1

s,t0 〉t0|s (19)

ps,t0 = 〈µνh+ 〈RV 〉t0|s〉t0|s (20)

where µ is a small value. We used ν = 50, and set µ =
0.03 for monophonic examples, or 0.02 for polyphonic
transcription.

3. EXPERIMENTS

3.1 Data

Our eigeninstrument models were learned from synthesized
instrument notes. Eight woodwind instruments (French
Horn, Oboe, English Horn, Bassoon, Clarinet, PIccolo,
Flute, Recorder) and two pianos (Acoustic Grand Piano,
Bright Acoustic Piano) were synthesized by three sound-
fonts: Papelmedia Final, FluidR3 GM and RealFont.2.1.
For each instrument, only the pitches within its natural
playing range were used. We performed transcription on
three kinds of material: piano excerpts, woodwind excerpts,
and mixtures of piano and woodwind. We used two pi-
ano excerpts from RWC database [11], one synthesized pi-
ano excepts from J.S. Bach’s Chromatic Fugue, and three
woodwind excerpts from MIREX Multiple Fundamental
Frequency Estimation and Tracking evaluation task, in both
recorded and synthesized version. Mixtures were created
by adding individual tracks. The SGM V2:01 soundfont
was used to produce the synthesized tracks. All tracks were
down-sampled to 22kHz, and then a magnitude spectro-
gram was generated with a 1024-point STFT using a 46 ms
Hamming window and 25% overlap. All experiments were
repeated five times with random initialization.
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