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ABSTRACT

This abstract describes our score follower submitted to
the MIREX 2012 Real-time Audio to Score Alignment (a.k.a.
Score Following) task.

1. INTRODUCTION

A real-time score follower is a program that synchronizes a
performance with its score in real time. It estimates a score
position for each input time frame of the performance and
the estimation is made in an online fashion, (i.e. only using
past frames). In this MIREX task, the score and the audio
signals are given in the formats of MIDI and WAV. Here
we describe an overview of our score follower.

The presented system has two separated stages, prepro-
cessing and alignment. On the first one, we convert MIDI
data into a reference audio signal using a sequencer and
we analyze the provided information in order to define the
states sequence and the basis function associated to each
state. Each state is defined as an unique combination of
notes. These basis functions are learned from the syn-
thetic MIDI signal using a method based on NMF with
β-divergence where the gains are fixed as the ground-truth
transcription inferred from the MIDI. On the second stage,
NMF with fixed based is used over the WAV signal result-
ing in a distortion matrix that can be interpreted as the cost
of each state at each frame. Finally the score alignment is
obtained using an on-line Dynamic Time Warping (DTW)
over the distortion matrix in order to find the path with the
minimum cost and then determine the states real duration.

In the following sections, we will describe the method
and implementation in detail.

2. SYSTEM DESCRIPTION

First of all an overview of the score following system and
an example of the alignment can be seen in Figure 1.
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Figure 1. Proposed Real-Time Score Follower Block Diagram

2.1 Preprocessing Stage

2.1.1 States Definition

The aim of this stage is to compute the states and state
sequence from the MIDI data. A state is defined as a com-
bination of notes that occurs simultaneously in the ground-
truth transcription inferred from the MIDI data and can be
formulated as

Sk =
{
nkj , j = 1, ..., J, k = 1, ...,K

}
(1)

where nkj is the note played by instrument j, k is the
state number, J is the total number of instruments and K
the total number of states.

The states sequence is a 1xM vector that provides in-
formation about the states transitions in the MIDI data and
is defined as

Ψ = {Smk , 1 6 m 6M} (2)

where Smk is the k-th state occurring at the m-th posi-
tion in the state sequence vector and M is the total number
of transitions between states.



2.1.2 Basis Functions Learning

Once the states and the states sequence have been defined,
we will learn the basis functions associated to each state.
To this end, we use a supervised method based on Non-
Negative Matrix Factorizacion (NMF) with Multiplicative
Update (MU) rules.

First of all, let us define the signal model as

x(f, t) ≈ x̂(f, t) =

K∑
k=1

gk(t), bk(f) (3)

where x(f, t) is the magnitude spectrogram of the syn-
thetic signal generated from the MIDI data with a sequencer,
x̂(f, t) is the estimated spectrogram, gk(t) is the gain of
the basis function for state k at frame t, and bk(f), k =
1, ...,K are the bases.

When the parameters are restricted to be non-negative,
as it is the case of magnitude spectra, a common way to
compute the factorization is to minimize the reconstruc-
tion error between the observed spectrogram and the mod-
eled one. The most popular cost functions are the Eu-
clidean (EUC) distance, the generalized Kullback-Leibner
(KL) and the Itakura-Saito (IS) divergences. Besides, the
β-divergence (see eq. 4) is another commonly used cost
function that includes in its definition the three previously
mentioned EUC (β = 2), KL (β = 1) and IS (β = 0) cost
functions.

Dβ(x|x̂) =


1

β(β−1)

(
xβ + (β − 1)x̂β − βxx̂β−1

)
β ∈ (0, 1) ∪ (1, 2]

x log x
x̂
− x+ x̂ β = 1

x
x̂
+ log x

x̂
− 1 β = 0

(4)

In order to obtain the model parameters that minimize
the cost function, Lee et al. [1] proposes an iterative al-
gorithm based on multiplicative update (MU) rules. Un-
der these rules, Dβ(x(f, t)|x̂(f, t)) is shown to be non-
increasing at each iteration while ensuring non-negativity
of the bases and the gains. Details are omitted to keep
the presentation compact, for further information please
read [1, 2]. For the model of eq. (3), multiplicative up-
dates which minimize the β-divergence are defined as

bk(f)← bk(f)

∑
f,t x(f, t)x̂(f, t)β−2gk(t)∑

f,t x̂(f, t)β−1gk(t)
(5)

gk(t)← gk(t)

∑
f,m x(f, t)x̂(f, t)β−2bk(f)∑

f,m x̂(f, t)β−1bk(f)
(6)

Finally, the method to learn the basis functions for each
state is described in Algorithm 2.

Note that Rk(t) is a binary state/time matrix that rep-
resent the ground-truth transcription of the training data.
Therefore, at each frame, the active state k is set to one
and the rest are zero. Gains initialized to zero will remain
zero, and therefore the frame becomes represented with the
correct state.

Algorithm 1 States Basis Functions Learning Method
1 Initialize gk(t) with the ground truth transcription
Rk(t) and bk(f) with random positive values.

2 Update the bases using eq. (5).
3 Repeat step 2 until the algorithm converges (or maxi-

mum number of iterations is reached).

2.2 Alignment Stage

2.2.1 Probability Matrix Computation

As explained in section 2.1.2, the basis functions bk(f) for
each state are trained in advance using the MIDI data and
kept fixed. Each basis function models the spectrum of an
unique state.

Now, the aim is to compute the gain matrix gk(t) and
the final cost matrix D(t, k) that measures the likelihood
between the estimated and the real spectrogram.

The process is detailed in Algorithm 2 and it is similar
than the one in Algorithm 1.

Algorithm 2 States Basis Functions Learning Method
1 Initialize bk(f) with the values learned in section 2.1.2

and gk(t) with random positive values.
2 Update the gains using eq. (6).
3 Repeat step 2 until the algorithm converges (or maxi-

mum number of iterations is reached).
4 Compute the distortion matrix Dβ(x|x̂) using eq. (4).

As can be inferred, the distortion matrix Dβ(t, k) pro-
vides us information about the similitude of each state k
basis function with the real signal spectrum at each frame t.
Using this information, we can directly compute the prob-
ability matrix for the state sequence ψ as

D(t,m) = {|Dβmk (t)| 1 6 m 6M} (7)

Therefore, we should find the minimum cost path in or-
der to determine the duration in the real performance of
each state in the sequence. To this end, we have applied a
real-time DTW as explained in the following section.

2.2.2 Real State Sequence Estimation by DTW

We used the following constrained DTW path:

D(t,m) = min

{
D(t− 1,m) + d(t,m)

D(t− 1,m− 1) + 2d(t,m)

}
(8)

where t is the index of the current performance frame
to be searched, m is the index of current state in the state
sequence Ψ, d(t, m) is value of the distortion computed
with the β-divergence function for the t-th frame and the
state in the m-th position in the sequence and D(t,m) is
the accumulated cost value at the t-th frame and the m-
th state at the sequence. Note that this constrained path
inhibits occurrence of vertical steps since only one state
can be active at each frame.
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Figure 2. Proposed Real-Time Score Follower Block Diagram

2.2.3 Real-time DTW

Standard DTW assumes off-line search and the estimated
path is obtained by backtracing of whole the signal. To
extend DTW for the on-line search without backtracing,
we simply select the reference state which has the smallest
accumulated distance with the current performance frame
t. An example of the on-line DTW performance is shown
in Figure 3.

3. EVALUATION

4. REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for Non-
negative Matrix Factorization,” in Proc. of Neural In-
formation Processing Systems, Denver, USA, 2000.

[2] C. Févotte, J. Idier “Algorithms for Nonnegative Ma-
trix Factorization with the Beta-Divergence,” Neural
Computation, vol. 23, no. 9, pp. 2421-2456, Septem-
ber 2011.


