
MARSYAS SUBMISSIONS TO MIREX 2012

George Tzanetakis
University of Victoria

Computer Science
gtzan@cs.uvic.ca

ABSTRACT

Marsyas is an open source software framework for au-
dio analysis, synthesis and retrieval with specific empha-
sis on Music Information Retrieval. It is developed by an
international team of programmers and researchers led by
George Tzanetakis. In MIREX 2012 the Marsyas team
participated in the following tasks that we have partici-
pated in the past: Audio Classical Composer Identifica-
tion, Audio Genre Classification (Latin and Mixed), Au-
dio Music Mood Classification, Audio Music Similarity
and Retrieval, and Audio Tagging Tasks. In addition we
participated for the first time with baseline systems to au-
dio key detection and multiple F0 estimation and track-
ing. Finally, the INESC Beat Tracker (IBT) that is written
in Marsyas participated in the beat tracking task but it is
described in a separate abstract. In this abstract we de-
scribe the specific algorithmic details of our submissions
and provide information about how researchers can use
our system using the MIREX input/output conventions on
their own datasets. Also some comments on the results
are provided.

1 INTRODUCTION

Marsyas is an open source software framework for audio
processing with specific emphasis on Music Information
Retrieval (MIR). It has been around since 1999 and in
2002-2003 underwent a major restructure/rewrite (version
0.2) [8]. This version has now matured and has been pro-
gressing nicely in 2006-2012 with the addition of several
new developers and finally some decent documentation.
We have participated in several tasks mostly related to
classification and similarity since the Music Information
Retrieval Evaluation Exchange (MIREX) in 2007. Since
2009 we also submitted algorithms for automatic onset de-
tection, beat tracking, and automatic music tag annotation.
This year we did not submit an algorithm to the automatic
onset detection.

There are two main advantages of Marsyas compared
to other solutions for building MIR systems:

• Integration:
Marsyas strives to support all the necessary algo-
rithmic and software building blocks required to build

c© 2007 Austrian Computer Society (OCG).

full MIR systems. Frequently MIR researchers use
a variety of different software systems to achieve
their goal. For example MATLAB might be used
for feature extraction and WEKA might be used for
machine learning/classification. There are two main
problems with such non-integrated approaches. The
first is reduced performance due to communication
bottlenecks between each part of the process. The
second which is more deep but not really utilized in
our submissions this year is the ability of integrated
systems to combine signal processing and machine
learning on several different abstraction layers and
with both bottom-up and top-down processing. In
constrast typically the use of non-integrated approaches
follows the classic bottom-up sequential approach
of feature extraction followed by classification.

• Runtime performance:

As most practitioners of MIR for audio signals know,
it takes a lot of computation time. One of the major
goals of Marsyas is to reduce this computation time
as much as possible. Unlike many other computer
applications, computation time differences in audio
MIR can play an important role in the ability to con-
duct experiments especially over large audio collec-
tions. An experiment that completes in 30 minutes
is much easier to handle compared to one that com-
pletes in 8 hours. Fast computations means that the
experiment can be repeated several times to tune
different parameters. Being able to process a mil-
lion sound clips can result in better statistics for fea-
ture extraction than processing 100 sound clips and
so on. Marsyas achieves fast run-time performance
using a variety of different means which include: 1)
a dataflow architecture that minimizes the need for
memory allocation and can process audio files using
large networks of computation blocks with a fixed
memory footprint 2) fast, optimized C++ code for
all operations 3) the ability to process large collec-
tions of audio files in one run with fixed memory
footprint. Frequently other approaches to MIR op-
erate on one file at a time adding significant compu-
tation time to start/stop a process, allocate memory
etc every time a file is processed.

The main goal of our MIREX submission was to high-
light these characteristics of Marsyas and hopefully moti-



vate more researchers to explore the framework and con-
tribute to it. Anyone can download the software frame-
work, look at the corresponding code and run experiments
on their own datasets. In fact the source distribution of
Marsyas includes a subdirectory named MIREX with spe-
cific detailed instructions of how to compile and run the
MIREX tasks so that researchers can easily perform their
own experiments on datasets as long as they follow they
MIREX conventions. The subversion revision numbers
for each year are also provided so that results from previ-
ous years can be replicated.

For the classification, tag and similarity retrieval tasks
the selected set of features and classification approach we
choose to utilize was straight-forward, well-known and
most importantly fast to compute. The features were mostly
related to timbral information. Moreover, we have signif-
icant experience using these features over a large num-
ber of various audio datasets so we felt more confident
about their robustness dealing with unknown audio col-
lections. This year we have also added features based on
pitch but removed features related to rhythmic content as
in our experiments their effect was minimal and they were
slower to compute. More complicated feature extractors
for example based on rhythmic, pitch, and stereo infor-
mation are supported at various levels of completeness in
Marsyas but unfortunately will have to wait for another
MIREX.

2 TEAM

George Tzanetakis is the author of the abstract but several
Marsyas developers participated in the development of the
algorithms. Steven Ness (University of Victoria, Canada),
Anthony Theocharis (University of Victoria, Canada) and
Luis Gustavo Martins (Catolica University, Portugal) worked
on various aspects of the automatic tag annotation submis-
sion. Fabien Gouyon (INESC Porto, Portugal), Joao Lo-
bato Oliveira (INESC Porto, Portgual) and Luis Gustavo
Martins (Catolica University, Portugal) worked on auto-
matic beat detection while Luis Gustavo Martins worked
on the audio onset detection. It is possible that there are
other submissions by different temas that also utilized Marsyas.
For example Renato Panda participated in the various clas-
sification tasks using features partially computed using
Marsyas. This report only describes the submissions co-
ordinated by the main Marsyas team.

3 SYSTEM DESCRIPTION

For all the classification, annotation and similarity tasks
we participated we decided to represent each audio clip
as a single feature vector. Even though much more elabo-
rate audio clip representations have been proposed in the
literature we like the simplicity of machine learning and
similarity calculation using single feature vectors per au-
dio clip. Coupled with a decent classifier this approach
worked reasonably well compared to other much more
complex ones.

Figure 1. Feature extraction and texture window

The features used are Spectral Centroid, Rolloff, Flux
and Mel-Frequency Cepstral Coefficients (MFCC). To cap-
ture the feature we compute a running mean and standard
deviation over the past M frames:

mΦ(t) = mean[Φ(t−M + 1), ..,Φ(t)] (1)
sΦ(t) = std[Φ(t−M + 1), ..,Φ(t)] (2)

where Φ(t) is the original feature vector. Notice that
the dynamics features are computed at the same rate as the
original feature vector but depend on the past M frames
(40 in our case corresponding to approximately a so called
“texture window” of 1 second). This results in a feature
vector of 32 dimensions at the same rate as the original 16-
dimensional one. This process is illustrated in Figure 1.
The sequence of feature vectors is collapsed into a single
feature vector representing the entire audio clip by tak-
ing again the mean and standard deviation across the 30
seconds (the sequence of dynamics features) resulting in
the final 64-dimensional feature vector per audio clip. A
more detailed description of the features can be found in
Tzanetakis and Cook [7].

In addition to these features this year we also included
features based on pitch content as well as rhythmic in-
formation. The pitch features are based on computing a
chroma vector every 20 milliseconds. The code is based
on the MATLAB code for chroma calculation provided
by Dan Ellis. The ratio of the peak corresponding to each
pitch class to the maximum pitch class is calculated as a
features. In addition the maximum peak as well as the
average value of the chroma vector are also used as fea-
tures. Means and variances over a “texture window” as
well well as across the entire song are calculated similarly
to the timbral features.

For all the classification tasks (audio classical com-



poser identification, audio genre classification, audio mu-
sic mood classification) a linear support vector machine
classifier was used.

4 AUDIO TAG CLASSIFICATION

Audio tag annotation can viewed as a problem of multi-
label classification [6]. More details about our approach
to this problem can be found in a ACM Multimedia pa-
per [3] as well as a more recent ICMLA publication [5].
We use the term stacking for the classifier architecture we
have adopted. Our approach is to use a distribution clas-
sifier (a linear SVM with probabilistic outputs) that can
output a distribution of affinities (or probabilities) for each
tag. This affinity vector can either be used directly for
indexing and retrieval, or thresholded to obtain a binary
vector with predicted tag associations for the particular
track. The resulting affinity vector is fed into a second
stage SVM classifier in order to better capture the rela-
tions between tags. This approach is a specialized case of
stacking generalization [9], a method for the combination
of multiple classifiers. Similar ideas have appeared in the
literature under other terms such as anchor-based classifi-
cation, and semantic space retrieval, but not necessarily in
a multi-label tag annotation context. The general idea is
to map the content-based features to a more semantically
meaningful space, frequently utilizing external informa-
tion such as web resources. Stacked generalization has
been used for discriminative methods for multi-label clas-
sification in text retrieval [2] but using a vector of binary
predictions for each label to model dependencies between
them. The most closely relevant work is applied in im-
proving multi-label analysis of music titles again using a
second stage classifier on the binary predictions of the first
stage classifiers which the authors term the correction ap-
proach [4].

Figure 2. System flow diagram

Figure 4 shows the flow of information for our pro-
posed audio annotation system. For each track in the au-
dio collection a feature vector is calculated based on the
audio content. As each track might be annotated by mul-
tiple tags the feature vector is fed into the multi-class Au-
dio SVM several times with different tags. Once all tracks

have been processed, the linear SVM is trained and a tag
affinity output vector (TAV) is calculated. The TAV can
be used directly for retrieval and storage or converted to
a tag binary vector (TBV) by some thresholding method.
When stacked generalization is used, the tag affinity vec-
tor (TAV) is used as a semantic feature vector for a sec-
ond round of train- ing over the tracks using an affinity
SVM which produces a stacked tag affinity vector (STAV)
and a stacked tag bi- nary vector (STBV). The resulting
predicted affinity and binary vector can be used to eval-
uate the effectiveness of the retrieval system using met-
rics such as Area under Receiver Operating Characteris-
tic Curve (AROC) for the TAV and information retrieval
measures for the TBV.

5 AUDIO MUSIC SIMILARITY AND RETRIEVAL

For the audio similarity and retrieval task once all the fea-
ture vectors (one per audio clip) have been computed the
features are normalized so that the minimum of each fea-
ture is 0 and the maximum in 1 (Max/Min Normaliza-
tion) and Euclidean distance over the normalized features
is used for the distance matrix.

6 IMPLEMENTATION

In this section we provide information about how to down-
load Marsyas and find information for installing and us-
ing the framework as well as specific information for run-
ning the tasks we participated using the MIREX 2009 in-
put/output conventions. We hope that providing this infor-
mation will help other researchers and practitioners run
our system on their own datasets and motivate them to
participate in the Marsyas developer and user communi-
ties. Marsyas can be compiled under Linux, OS X (Intel
and PPC), and Windows (Visual Studio, Visual Studio Ex-
press, Cygwin and MinGW).

To download Marsyas use the following url:
http://www.sourceforge.net/projects/marsyas

For information and documentation use the following url:
http://marsyas.sourceforge.net

System specific installation instructions are provided in
the documentation. Once compiled it is straightforward to
run the MIREX 2009 tasks we participated. The direc-
tory MIREX in the Marsyas source tree contains all the
necessary instructions including the exact SVN revision
numbers that were used for the MIREX 2009 and MIREX
2010, and 2012 submissions.

For classification the Marsyas MIREX submissions uti-
lized a linear support vector machine trained using libsvm
[1] which is directly integrated into the source code. Fig-
ure 3 shows the Marsyas dataflow diagram for the feature
extraction that is common among all tasks.



Figure 3. Feature extraction data flow network in
Marsyas 0.2

6.1 Quick Instructions for compiling Marsyas

Quick instructions for compiling Marsyas (more detailed
instructions can be found in the manual which is online at
http://marsyas.info - the instructions assume that subver-
sion and cmake are available in the system the revision
number is provided separately for each task). The last
command enters the subdirectory where all the Marsyas
executables reside.

> svn -r REVNUM co SVNPATH marsyas
> cd marsyas
> mkdir build
> cd build
> ccmake ../src
> make
> cd build/bin

where each task has a different revision number (REVNUM).
Typically the latest revision should work for all tasks how-
ever to ensure accurate replication we record the revision
used for the MIREX submission. All the MIREX task in-
structions are availabe in the MIREX folder of the Marsyas
source code repository. For example README 2012.txt
is the set of instructions to run the Marsyas submissions
for 2012.

7 DISCUSSION OF RESULTS

Overall we were pleased with the performance of the Marsyas
submissions to MIREX 2012. In all tasks the Marsyas
submissions performed ok. Our submissions have not changed
since 2009 and are beginning to show signs of their age.
For next year we plan to use a more comprehensive set
of features. The detailed results are available from the
MIREX 2012 webpage 1 so in this section we only briefly
highlight some of the evaluation results that are specific
to Marsyas. The run-time results are only available for
some tasks so we can not comment in detail about the su-
perior run-time performance of Marsyas. We expect that
the Marsyas submissions are typically significantly faster
especially for the classification and similarity tasks.

Finally we would like to encourage other practitioners
to explore and hopefully contribute to Marsyas. We are
also happy to offer assistance to anyone interested in port-
ing their existing systems into Marsyas.

1 http://www.music-ir.org/mirex2012/index.php/
Main_Page

Rank Marsyas Best
Composer 15/15 46.86 68.65
Latin 13/15 59.99 77.04
Mixed 12/16 67.97 76.13
Mood 14/20 60.33 67.83

Table 1. Rank and classification accuracy for Marsyas
submissions

Rank Marsyas Best
8/10 44.87 53.188
8/10 0.894 1.138

Table 3. Fine and coarse score results of audio music sim-
ilarity

8 NEW SUBMISSIONS

Both new submissions audio key detection and multiple
F0 estimation and tracking performed really poorly. They
were both intended to be baseline submissions that need
to be improved. The audio key detection was simply done
on large windows by correlating chroma vectors with the
Krumhansl templates. The multiple F0 estimation and
tracking was based on factorization methods but we sus-
pect utilized a low threshold resulting in oversegmenta-
tion. Results can be found on the MIREX results web-
page.

9 FUTURE WORK

There is plenty of interesting future work to be explored.
Now that we have the MIREX Input/Output conventions
fully supported we are very excited about participating in
MIREX in the future. Our submissions this year can be
considered a baseline and we can only improve in the fu-
ture. In no particular order here are some of the directions
we would like to explore for the tasks we participated this
year: more complex audio clip representations and sim-
ilarities than the single vector approach, additional fea-
tures (rhythm-based, pitch/chroma based, stereo panning),
and better utilization of domain knowledge such as hier-
archies. In addition we hope to participate in more tasks
in the following years.

10 REFERENCES

[1] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a li-
brary for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/
˜cjlin/libsvm.

[2] Shantanu Godbole and Sunita Sarawagi. Discrimina-
tive methods for multi-labeled classification. In Proc.
Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, 2004.

[3] S. Ness, A. Theocharis, G. Martins, L., and G. Tzane-
takis. Improving automatic music tag annotation us-



MusicMiner2012 Mood2012 MusicMiner2010 Mood 2010
Marsyas F-Measure 0.4682 (9/9) 0.3745 (5/9) 0.4567 0.3672
Best F-Measure 0.4950 0.4915 0.4784 0.4658
Marsyas ROC 0.8873 (2/9) 0.8620 (2/9) 0.8828 0.8587
Best ROC 0.8917 0.8653 0.8828 0.8606

Table 2. Average Tag F-Measure and ROC for tag annotation tasks comparing 2012 and 2010

ing stacked generalization of probabilistic svm out-
puts. In Proc. ACM Multimedia, 2009.

[4] F. Pachet and P. Roy. Improving multilabel analysis of
music titles: A large-scale validation of the correction
approach. Audio, Speech, and Language Processing,
IEEE Transactions on, 17(2):335–343, 2009.

[5] A. Theocharis, M. Pierce, and G. Tzanetakis. An em-
pirical investigation of stacking for music tag anno-
tation. In Machine Learning and Applications and
Workshops (ICMLA), 2011 10th International Confer-
ence on, volume 1, pages 90–95. IEEE, 2011.

[6] G. Tsoumakas and I. Katakis. Multi label classifica-
tion: An overview. Int. Journal of Data Warehouse
and Mining, 3(3):1–13, 2007.

[7] G. Tzanetakis and P. Cook. Musical Genre Classifi-
cation of Audio Signals. IEEE Trans. on Speech and
Audio Processing, 10(5), July 2002.

[8] George Tzanetakis. Marsyas-0.2: a case study in im-
plementing music information retrieval systems. In
Intelligent Music Information Systems. IGI Global,
2007. to appear.

[9] David H. Wolpert. Stacked generalization. Neural
Networks, 5:241–259, 1992.


