MULTI-TIMESCALE PMSCS FOR MUSIC AUDIO CLASSIFICATION

Philippe Hamel
hamelphi @iro.umontreal.ca

1. INTRODUCTION

This extended abstract describes a system that uses multi
timescale Principal Mel-Spectrum Components and a com-
bination of temporal pooling functions to solve the task
of music audio classification and tagging. These concepts
were introduced in [3] and [2]. We present here technical
details and a summarized description of the model. For a
deeper explanation, see the original papers.

1.1 Feature Extraction

Principal mel-spectrum components (PMSCs) [3] are com-
puted several timescales in parallel [2]. For each timescale,
the feature extraction involves four steps: discrete Fourier
transform (DFT), mel-scaling, principal component analy-
sis whitening (PCA) and temporal pooling.

Firstly, for each timescale, we compute discrete Fourier
transforms over a given time length. To compute PMSCs
at different timescales, we simply use different time length
for the DFT. In this system, we use a combination of 5
timescales: 46ms, 93ms, 186ms, 372ms and 743ms. We
use the same frame step of 23ms for all timescales, mean-
ing that there is more overlap for longer timescales.

Secondly, we run the spectral amplitudes of the DFTs
through a set of 200 mel-scaled triangular filters to obtain
a set of spectral energy bands. We take the logarithm of
the amplitude of those bands.

Then, we compute the principal components of a ran-
dom sub-sample of the dataset (roughly 60,000 frames). In
order to obtain features with unitary variance, we multiply
each component by the inverse square of its eigenvalue, a
transformation known as PCA whitening. Here, the goal
of the PCA is to diagonalize the covariance matrix, not
to reduce dimensionality. Thus, we keep all the principal
components (yielding 200 dimensions per timescale). The
PCA whitened mel-scaled energy bands are referred to as
PMSCs.

In the next step, we apply temporal pooling, i.e. we
compute statistics over the PMSCs over a given window
length. We chose a time window of roughly 1.5 seconds.
Within this time window, we compute the mean, the vari-
ance, the minimum and the maximum of each feature. Thus,
for each timescale and for each 1.5 seconds window, we
obtain 4 x 200 = 800 features.

This document is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

(© 2010 The Authors.

We then concatenate all the timescales in a single vector
corresponding to a window of 1.5s, yielding 800x5 = 4000
features per window.

2. MODEL

Each pooling window is considered as a training exam-
ple for the classifier, and we average the predictions of
the classifier over all the windows of a given clip to ob-
tain the final classification. The classifier is a single hidden
layer neural network, also known as multi-layer perceptron
(MLP). We used a hidden layer of 2000 units, sigmoid acti-
vation, L2 weight decay and cross-entropy cost. The MLP
was coded in python using the Theano library [1].

The neural network is trained by gradient descent. The
full training set is divided in two subsets, a training set
and validation set. The network is trained by using mini-
batches of 10 examples (10 full excerpts) at a time.

We measure the AUC as our validation measure. Us-
ing this validation measure we use early-stopping to know
when to stop training the network.

3. CLASSIFICATION

The MLP outputs an affinity prediction for each class. These
predictions are done over excerpts of roughly 1.5 seconds.
The predictions are averaged over all the windows from
one song to obtain a prediction for the whole song. For
the audio classification task, we simply choose the class
with the highest activation at the output of the MLP as the
predicted class.

4. TAGGING

There are two required outputs for the audio tag classifica-
tion : affinity and binary classification.

4.1 Affinity

The MLP already outputs an affinity prediction between 0
and 1 for each possible tag. The affinity scores for a song
is thus directly the averaged output of the MLP over all
windows.

4.2 Binary Classification

For the binary classification, we need to define a threshold
at which to discriminate between an positive and negative
tags. We choose the threshold that optimizes the F1-score
on the validation set. Thus, all the tags with an affinity
higher than the chosen threshold will be considered as pos-
itive tags.



(1]

(2]

(4]

Mel

PCA

' . ' . Temporal
DFT scaling whitening pooling

' . Mel ' PCA . Temporal
DFT scaling whitening pooling

' . Mel ' PCA . Temporal
DFT scaling whitening pooling

' . Mel ' PCA . Temporal
DFT scaling whitening pooling

Figure 1. PMSCs are computed in parallel at different timescales.

5. REFERENCES

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio. Theano: a CPU and GPU math expres-
sion compiler. In Proceedings of the Python for Scien-
tific Computing Conference (SciPy), June 2010.

P. Hamel, Y. Bengio, and D. Eck. Building musically-
relevant audio features through multiple timescale
representations. In Proceedings of the 13th Interna-
tional Conference on Music Information Retrieval (IS-
MIR’12), Porto, Portugal, 2012.

P. Hamel, S. Lemieux, Y. Bengio, and D. Eck. Tempo-
ral pooling and multiscale learning for automatic an-
notation and ranking of music audio. In Proceedings of
the 12th International Conference on Music Informa-
tion Retrieval (ISMIR’11), 2011.

E. Law and L. von Ahn. Input-agreement: a new mech-
anism for collecting data using human computation
games. In Proceedings of the International Conference
on Human factors in computing systems, CHI. ACM,
2009.

NV VY




