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ABSTRACT

In the past decade, non-negative matrix factorisation (NMF)
and probabilistic latent component analysis (PLCA) have
been used widely in automatic music transcription. De-
spite their successes, these methods only guarantee that
the decomposition converges to a local minimum in the
cost function. In order to find better local minima, we
propose to extend an existing PLCA-based transcription
method with the deterministic annealing EM (DAEM) al-
gorithm. The PLCA update rules are modified by intro-
ducing a “temperature” parameter. At higher temperatures,
general areas of the search space containing good solu-
tions are found. As the temperature is gradually decreased,
distinctions in the data are sharpened, resulting in a more
fine-grained optimisation at each successive temperature.
This process reduces the dependence on the initialisation,
which is otherwise a limitation of NMF and PLCA ap-
proaches. There are three variants of the system submit-
ted, two for multiple-F0 estimation task trained on differ-
ent sets of instrument templates (with and without piano),
and one trained on orchestral instruments and piano for
note tracking task.

1. INTRODUCTION

Automatic music transcription is the process of transcrib-
ing audio into a symbolic music representation. To date,
non-negative matrix factorisation (NMF) [7] and its prob-
abilistic counterpart, probabilistic latent component anal-
ysis (PLCA) [9], have been used extensively for this task.
These methods treat the spectrogram as a matrix, and de-
compose it into spectral bases, gain functions, and instru-
ment distributions (when considering different instruments).

One obvious problem of non-negative matrix decompo-
sition methods (such as NMF and PLCA) is that they are
initialisation-sensitive and tend to converge to a local mini-
mum. Training instrument templates is an effective way to
initialise the spectral bases. By fixing the templates during
the updating, we obtain a stable output for the gain func-
tion, independent of its initialisation. But when the model
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becomes more complicated, as by introducing an instru-
ment variable into the model, which is used widely nowa-
days, it is not possible for us to find good initialisations for
all variables.

In this paper, we tackle the local minimum problem
by introducing an optimisation method. When using non-
negative matrix decomposition methods, the transcription
result is related to the cost function, the update rules and
also the constraints. Here, We particularly focus on PLCA,
which utilises the Kullback-Leibler (KL) divergence as the
cost function and derives the update rules based on the
EM algorithm [8]. To address the local minimum prob-
lem of the EM algorithm, we make use of the determinis-
tic annealing EM algorithm [10] by introducing a temper-
ature parameter into an existing PLCA-based model [2].
There are three variants of the system submitted, two for
multiple-F0 estimation task trained on different sets of in-
strument templates (with and without piano), and one for
note tracking task. Three variants of system are submitted
for the MIREX 2013 evaluation, two for multiple-F0 esti-
mation task trained on orchestral instruments only (CDM1)
and on orchestral instruments and piano (CDM2), and one
for note tracking task (CDM3) trained on orchestral instru-
ments and piano. It should be noted that this paper is a
shorter version of the ISMIR paper. If you’d like to cite
this work, please use the ISMIR paper.

2. PROPOSED METHOD

To deal with the local minimum problem of PLCA models,
we derive the update rules according to the deterministic
annealing EM algorithm [10], which introduces a temper-
ature parameter into the EM algorithm. The temperature
parameter is employed on the posterior probability density
in the E-step. Then by gradually reducing the temperature,
the EM steps are iteratively executed until convergence at
each temperature, leading the result to a global or better lo-
cal minimum. We apply this method to a baseline PLCA-
based model proposed in [2]. Since the templates are kept
fixed, the temperature parameter is applied to the posterior
probability density of the instrument distribution. In this
way, we can enjoy the benefits of the DAEM algorithm
and the templates.

2.1 The Baseline PLCA Model

Benetos and Dixon [2] proposed a model that adds an in-
strument distribution variable to shift-invariant PLCA. The



instrument lowest note highest note

1 Bassoon 34 72
2 Cello 26 81
3 Clarinet 50 89
4 Flute 60 96
5 Guitar 40 76
6 Horn 41 77
7 Oboe 58 91
8 Piano 21 108
9 Tenor Sax 44 75

10 Violin 55 100

Table 1: Instrument ranges, adapted from [1]

time-frequency representation of the input signal was com-
puted with the Constant-Q Transform [6] using 120 bins
per octave. Templates were trained for 10 instruments al-
lowing shifts within a semitone range, in order to deal with
arbitrary tuning and frequency modulation. The model is
formulated as:

P (ω, t) = P (t)
∑
p,s

P (ω|s, p)∗ωP (f |p, t)P (s|p, t)P (p|t)

(1)
where P (ω, t) is the approximated spectrogram, P (t) is
the energy distribution of spectrogram. P (ω|s, p) are the
templates of instrument s and pitch p, P (f |p, t) is the shift-
ed variant for each p, P (s|p, t) is the instrument contribu-
tion for each pitch, and P (p|t) is the pitch probability dis-
tribution for each time frame. The templates P (ω|s, p) are
trained using the MAPS dataset [3] and RWC dataset [4].

The update rules are derived from the EM algorithm.
For the E-step, the posterior probability density is:

P (p, f, s|ω, t) =
P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)∑
p,f,s P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)

(2)

For the M-step, each parameter is estimated.

P (f |p, t) =
∑
ω,s P (p, f, s|ω, t)P (ω, t)∑
f,ω,s P (p, f, s|ω, t)P (ω, t)

(3)

P (s|p, t) =
(
∑
ω,f P (p, f, s|ω, t)P (ω, t))α1∑

s(
∑
ω,f P (p, f, s|ω, t)P (ω, t))α1

(4)

P (p|t) =
(
∑
ω,f,s P (p, f, s|ω, t)P (ω, t))α2∑

p(
∑
ω,f,s P (p, f, s|ω, t)P (ω, t))α2

(5)

The templates P (ω|s, p) are not updated as they are pre-
viously trained and kept fixed. The parameters α1 and α2

used in Eqn. (4) and (5) are used to enforce sparsity, where
α1, α2 > 1. The final piano-roll matrix P (p, t) and the
pitches assigned to each instrument P (p, t, s) are given by:

P (p, t) = P (p|t)P (t) (6)

P (p, t, s) = P (s|p, t)P (p|t)P (t) (7)

For post-processing, instead of using an HMM, the note
events are extracted by performing thresholding on P (p, t)
and using minimum-length pruning (deleting notes shorter
than 50ms). The instrument-wise note events are detected
in the same way using P (p, t, s).

2.2 The DAEM-based Model

To modify the update rules according to the DAEM algo-
rithm, in the E-step, the posterior probability density in
Eqn. (2) is modified by introducing a temperature parame-
ter τ 1 :

Pτ (p, f, s|ω, t) =
(P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t))1/τ∑
p,f,s(P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t))1/τ

(8)
And the update rules are extended by adding a τ -loop:

1. Set τ ← τmax(τmax > 1).

2. Iterate the following EM-steps until convergence:
E-step: calculate Pτ (p, f, s|ω, t).
M-step: estimate P (f |p, t), P (s|p, t) and P (p|t) by
replacing P (p, f, s|ω, t) with Pτ (p, f, s|ω, t).

3. Decrease τ .

4. If τ ≥ 1, repeat from step 2; otherwise stop.

By gradually decreasing τ , the temperature is cooling
down. At higher temperatures, the distributions are
smoothed and general areas of the search space containing
good solutions are found. As the temperature is gradually
decreased, distinctions in the data are sharpened, resulting
in a more fine-grained optimisation at each successive tem-
perature.

Considering the properties of this particular model, we
simplify the posterior probability density to:

Pτ (p, f, s|ω, t) =
P (ω − f |s, p)P (f |p, t)P (s|p, t)1/τP (p|t)∑
p,f,s P (ω − f |s, p)P (f |p, t)P (s|p, t)1/τP (p|t)

(9)
The convolution of the templates and the pitch impulse dis-
tribution, giving the terms P (ω − f |s, p)P (f |p, t), works
as the shift-invariant templates here. These are not mod-
ified by the temperature parameter, as the templates are
fixed during the iterative process 2 . In addition, having
observed that the pitch distribution P (p|t) is dependent on
the instrument distribution P (s|p, t) in this model, we only
need to modify P (s|p, t) in the posterior probability den-
sity.

2.3 System Variants

There are three variants of system for the MIREX 2013,
two for multiple-F0 estimation task (CDM1 and CDM2),
and one for note tracking task (CDM3). As we try to
find out whether templates trained on an extra instrument
(piano) can improve the transcription result or not, we

1 The parameter used in [10] is β, and the temperature is indicated
by 1/β. The reason for using τ here is because we want to indicate the
temperature directly by τ and distinguish the proposed method from the
β-divergence.

2 This was also confirmed by test experiments where the power 1/τ
was also applied to the pitch impulse distribution P (f |p, t), giving simi-
lar transcription results.



use two different sets of instrument templates for Task
1: one trained on orchestral instruments only (CDM1),
the other one trained on orchestral instruments and piano
(CDM2). Templates used for note tracking (CDM3) are
trained on orchestral instruments and piano. In all case,
we set α1 = 1.3 and α2 = 1.1; the parameter τ took the
values 10/i, i ∈ {8, 9, 10}. The number of iterations for
each τ is set to 12.
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