
MIREX 2013 ENTRY: VAMP PLUGINS FROM THE CENTRE FOR
DIGITAL MUSIC

Chris Cannam, Matthias Mauch, Matthew E. P. Davies, Simon Dixon, Christian Landone,
Katy Noland, Mark Levy, Massimiliano Zanoni, Dan Stowell and Luı́s A. Figueira

Queen Mary, University of London
chris.cannam@eecs.qmul.ac.uk

ABSTRACT

In this submission we offer for evaluation several au-
dio feature extraction plugins in Vamp format. Some of
these plugins represent efficient implementations based on
modern work, while others are no longer state-of-the-art
and were developed a few years ago. The methods imple-
mented in this set of plugins are described in the literature
and are referenced throughout this paper.

1. INTRODUCTION

The Vamp plugin format 1 was developed at the Centre for
Digital Music (C4DM) at Queen Mary, University of Lon-
don, during 2005-2006 in response to a desire to publish
work in a form that would be immediately useful to people
outside this research field. The Vamp plugin format was
published with an open source SDK, alongside the Sonic
Visualiser [2] audio analysis application which provided a
useful host for Vamp plugins.

In subsequent years the Vamp format has become a mod-
erately popular means of distributing methods from the
Centre and other research groups. Some dozens of Vamp
plugins are now available from groups such as the Music
Technology Group at UPF in Barcelona, the Sound and
Music Computing group at INESC in Porto, the BBC, and
others, as well as from the Centre for Digital Music.

The plugins submitted for this evaluation are provided
as a set of library files. Those with names starting “QM”
are all provided in a single library file, the QM Vamp Plug-
ins set, made available in binary form for Windows, OS/X,
and Linux from the Centre for Digital Music’s download
page 2 . All of these plugins are open-source, and source
is available through the SoundSoftware code site 3 . These
plugins come from a number of authors who are credited in
this abstract and in the plugins’ accompanying documen-
tation.

1 http://vamp-plugins.org/
2 http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
3 http://code.soundsoftware.ac.uk/projects/qm-vamp-plugins

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
c⃝ 2010 The Authors.

In addition to the QM Vamp Plugins set, this submis-
sion contains a number of individual plugins: the Chordino
and Segmentino plugins from Matthias Mauch; the Beat-
Root Vamp Plugin from Simon Dixon; OnsetsDS from
Dan Stowell; and a Cepstral Pitch Tracker Plugin from
Chris Cannam.

The plugins are all provided as 64-bit Linux shared ob-
jects depending on glibc 2.15 or newer. Sonic Annotator
v1.0 is also required 4 in order to run the task scripts.

(For a complete overview of this submission across all
of the tasks and plugins it covers, please see the relevant
repository at the SoundSoftware site. 5 )

2. SUBMISSIONS BY MIREX TASK

2.1 Audio Beat Tracking

2.1.1 QM Tempo and Beat Tracker

The QM Tempo and Beat Tracker [3] Vamp plugin analy-
ses a single channel of audio and estimates the positions of
metrical beats within the music.

This plugin uses the complex-domain onset detection
method from [6] with a hybrid of the two-state beat track-
ing model proposed in [3] and a dynamic programming
method based on [7].

To identify the tempo, the onset detection function is
partitioned into 6-second frames with a 1.5-second incre-
ment. The autocorrelation function of each 6-second onset
detection function is found and this is then passed through
a perceptually weighted comb filterbank [3]. The succes-
sive comb filterbank output signals are grouped together
into a matrix of observations of periodicity through time.
The best path of periodicity through these observations is
found using the Viterbi algorithm, where the transition ma-
trix is defined as a diagonal Gaussian.

Given the estimates of periodicity, the beat locations
are recovered by applying the dynamic programming algo-
rithm [7]. This process involves the calculation of a recur-
sive cumulative score function and backtrace signal. The
cumulative score indicates the likelihood of a beat existing
at each sample of the onset detection function input, and
the backtrace gives the location of the best previous beat
given this point in time. Once the cumulative score and
backtrace have been calculated for the whole input signal,

4 http://code.soundsoftware.ac.uk/projects/sonic-annotator
5 http://code.soundsoftware.ac.uk/projects/mirex2013



the best path through beat locations is found by recursively
sampling the backtrace signal from the end of the input
signal back to the beginning.

The QM Tempo and Beat Tracker plugin was written by
Matthew Davies and Christian Landone.

2.1.2 BeatRoot

The BeatRoot Vamp plugin is an open source Vamp plugin
library that implements the BeatRoot beat-tracking method
of Simon Dixon [4]. The BeatRoot algorithm has been
submitted to MIREX evaluation in earlier years [5]; this
plugin consists of the most recent BeatRoot code release,
converted from Java to C++ and modified for plugin for-
mat.

The BeatRoot plugin was written by Simon Dixon and
Chris Cannam.

2.2 Audio Key Detection

2.2.1 QM Key Detector

The QM Key Detector Vamp plugin continuously estimates
the key of the music by comparing the degree to which a
block-by-block chromagram correlates to stored key pro-
files for each major and minor key.

This plugin uses the correlation method described in [9]
and [8], but using different tone profiles. The key profiles
used in this implementation are drawn from analysis of
Book I of the Well Tempered Klavier by J S Bach, recorded
at A=440 equal temperament, as described in [15].

The QM Key Detector plugin was written by Katy Noland
and Christian Landone.

2.3 Audio Chord Extraction

2.3.1 Chordino

The Chordino plugin was developed following Mauch’s
2010 work on chord extraction, submitted to MIREX in
that year [13]. While that submission used a C++ chroma
implementation with a MATLAB dynamic Bayesian net-
work as a chord extraction front-end [12], Chordino is an
entirely C++ implementation that was developed specifi-
cally to be made freely available as an open-source plugin
for general use.

The method for the Chordino plugin has two parts:
NNLS Chroma — NNLS Chroma analyses a single

channel of audio using frame-wise spectral input from the
Vamp host. The spectrum is transformed to a log-frequency
spectrum (constant-Q) with three bins per semitone. On
this representation, two processing steps are performed:
tuning, after which each centre bin (i.e. bin 2, 5, 8, ) cor-
responds to a semitone, even if the tuning of the piece de-
viates from 440 Hz standard pitch; and running standard-
isation: subtraction of the running mean, division by the
running standard deviation. This has a spectral whitening
effect.

The processed log-frequency spectrum is then used as
an input for NNLS approximate transcription using a dic-
tionary of harmonic notes with geometrically decaying har-
monics magnitudes. The output of the NNLS approximate

transcription is semitone-spaced. To get the chroma, this
semitone spectrum is multiplied (element-wise) with the
desired profile (chroma or bass chroma) and then mapped
to 12 bins.

Chord transcription — A fixed dictionary of chord
profiles is used to calculate frame-wise chord similarities.
A standard HMM/Viterbi approach is used to smooth these
to provide a chord transcription.

Chordino was written by Matthias Mauch.

2.4 Audio Melody Extraction

2.4.1 Cepstral Pitch Tracker

The Cepstral Pitch Tracker Vamp Plugin is an open source
Vamp plugin implementation of a monophonic pitch track-
ing and note segmentation method.

The method is that described in the one-page handout
“Unit Testing: An audio research example” accompanying
our tutorial at DAFx 2012 [1]. It is an agent system, in
which agents are used to evaluate successive pitch peaks
to test whether they can be combined to form a plausible
note. The peaks are obtained from an interpolating peak
finder applied to the cepstral transform (inverse FFT of the
log magnitude spectrum) of the short-time Fourier trans-
form of each input frame. An agent-management system
supplies the pitches to agents, creates a new agent when
a novel pitch is found, reaps any agents that expire with-
out finding a plausible note, and accumulates the resulting
valid notes.

The Cepstral Pitch Tracker plugin was written by Chris
Cannam.

2.5 Audio Onset Detection

2.5.1 QM Note Onset Detector

The QM Note Onset Detector Vamp plugin estimates the
onset times of notes within the music. It calculates an on-
set likelihood function for each spectral frame, and picks
peaks in a smoothed version of this function.

Several onset detection functions are available in this
plugin; this submission uses the complex-domain method
described in [6].

The QM Note Onset Detector plugin was written by
Chris Duxbury, Juan Pablo Bello and Christian Landone.

2.5.2 OnsetsDS

OnsetsDS is an onset detector plugin wrapping Dan Stow-
ell’s OnsetsDS library 6 , described in [16].

OnsetsDS was designed to provide an FFT-based onset
detection that works very efficiently in real-time, with a
fast reaction time. It is not tailored for non-real-time use
or for any particular type of signal.

The OnsetsDS plugin was written by Dan Stowell and
Chris Cannam.

6 http://onsetsds.sourceforge.net/



2.6 Audio Structural Segmentation

2.6.1 QM Segmenter

The QM Segmenter Vamp plugin divides a single channel
of music up into structurally consistent segments.

The method, described in [10], relies upon timbral or
pitch similarity to obtain the high-level song structure. This
is based on the assumption that the distributions of timbre
features are similar over corresponding structural elements
of the music.

The input feature is a frequency-domain representation
of the audio signal, in this case using a Constant-Q trans-
form for the underlying features (though the plugin sup-
ports other timbral and pitch features). The extracted fea-
tures are normalised in accordance with the MPEG-7 stan-
dard (NASE descriptor), and the value of this envelope is
stored for each processing block of audio. This is followed
by the extraction of 20 principal components per block us-
ing PCA, yielding a sequence of 21 dimensional feature
vectors where the last element in each vector corresponds
to the energy envelope.

A 40-state Hidden Markov Model is then trained on the
whole sequence of features, with each state corresponding
to a specific timbre type. This partitions the timbre-space
of a given track into 40 possible types. After training and
decoding the HMM, the song is assigned a sequence of
timbre-features according to specific timbre-type distribu-
tions for each possible structural segment.

The segmentation itself is computed by clustering timbre-
type histograms. A series of histograms are created over
a sliding window which are grouped into M clusters by
an adapted soft k-means algorithm. Reference histograms,
iteratively updated during clustering, describe the timbre
distribution for each segment. The segmentation arises
from the final cluster assignments.

The QM Segmenter plugin was written by Mark Levy.

2.6.2 Segmentino

The Segmentino plugin is a new C++ implementation of a
segmentation method first described in Matthias Mauch’s
paper on using musical structure to enhance chord tran-
scription [14] and expanded on in Mauch’s PhD thesis [11].

A beat-quantised chroma representation is used to cal-
culate pair-wise similarities between beats (really: beat
“shingles”, i.e. multi-beat vectors). Based on this first sim-
ilarity calculation, an exhaustive comparison of all possi-
ble segments of reasonable length in beats is executed, and
segments are added to form segment families if they are
sufficiently similar to another “family member”. Having
accumulated a lot of families, the families are rated, and
the one with the highest score is used as the first segmen-
tation group that gets annotated. This last step is repeated
until no more families fit the remaining “holes” in the song
that haven’t already been assigned to a segment.

This method was developed for “classic rock” music,
and therefore assumes a few characteristics that are not
necessarily found in other music: repetition of harmonic
sequences in the music that coincide with structural seg-

ments in a song; a steady beat; segments of a certain length;
corresponding segments have the same length in beats.

The Segmentino plugin was written by Matthias Mauch
and Massimiliano Zanoni. It is currently in preparation for
a public release.

2.7 Audio Tempo Estimation

For this task we submit the same plugin as that used in the
Audio Beat Tracking task in section 2.1.1.

3. REFERENCES

[1] Chris Cannam. Unit testing: An audio research ex-
ample. Handout, 2012. One of the single-page hand-
outs made available at DAFx and ISMIR 2012 tu-
torials. See http://www.soundsoftware.ac.uk/handouts-
guides for more information.

[2] Chris Cannam, Christian Landone, and Mark Sandler.
Sonic visualiser: An open source application for view-
ing, analysing, and annotating music audio files. In
Proceedings of the ACM Multimedia 2010 Interna-
tional Conference, 2010.

[3] Matthew E. P. Davies and Mark D. Plumbley. Context-
dependent beat tracking of musical audio. IEEE Trans-
actions on Audio, Speech and Language Processing,
15(3):1009–1020, 2007.

[4] Simon Dixon. An interactive beat tracking and visuali-
sation system. In Proceedings of the 2001 International
Computer Music Conference (ICMC’2001), 2001.

[5] Simon Dixon. Mirex 2006 audio beat tracking evalua-
tion: Beatroot. 2006.

[6] Chris Duxbury, Juan Pablo Bello, Mike Davies, and
Mark Sandler. Complex domain onset detection for
musical signals. In Proceedings of the 6th Int. Confer-
ence on Digital Audio Effects (DAFx-03), 2003.

[7] D. P. W. Ellis. Beat tracking by dynamic programming.
Journal of New Music Research, 37(1):51–60, 2007.

[8] Emilia Gómez. Tonal description of polyphonic audio
for music content processing. INFORMS Journal on
Computing, Special Cluster on Computation in Music,
18, 2006.

[9] C. L. Krumhansl. Cognitive Foundations of Musical
Pitch. Oxford University Press, 1990.

[10] Mark Levy and Mark Sandler. Structural segmenta-
tion of musical audio by constrained clustering. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 16(2):318–326, February 2008.

[11] Matthias Mauch. Automatic Chord Transcription from
Audio Using Computational Models of Musical Con-
text. PhD thesis, Queen Mary, University of London,
2010.



[12] Matthias Mauch and Simon Dixon. Approximate note
transcription for the improved identification of difficult
chords. In Proceedings of the 11th International So-
ciety for Music Information Retrieval Conference (IS-
MIR 2010), 2010.

[13] Matthias Mauch and Simon Dixon. Mirex 2010: Chord
detection using a dynamic bayesian network. 2010.

[14] Matthias Mauch, Katy C. Noland, and Simon Dixon.
Using musical structure to enhance automatic chord
transcription. In Proceedings of the 10th International
Conference on Music Information Retrieval (ISMIR
2009), pages 231–236, 2009.

[15] Katy Noland and Mark Sandler. Signal processing pa-
rameters for tonality estimation. In Audio Engineering
Society Convention 122, May 2007.

[16] Dan Stowell and Mark D. Plumbley. Adaptive whiten-
ing for improved real-time audio onset detection. In
Proceedings of the International Computer Music Con-
ference (ICMC’07), 2007.


