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ABSTRACT 

In this submission, audio features that approximate tim-

bre are used for genre classification and music similarity 

estimation. This abstract describes the feature set, dis-

tance computation method, and classifier model used for 

the submitted algorithms.   

1. INTRODUCTION 

In our system, audio data are modeled as long-term ac-

cumulative distribution of frame-based spectral features. 

This is also known as the “bag-of-frames” (BOF) ap-

proach wherein audio data are treated as a global distribu-

tion of frame occurrences.  This approach is widely used 

in MIREX submissions. For MIREX 2010 genre classifi-

cation and audio similarity estimation task, the BOF ap-

proach was used for some of the top performing 

systems[1][2] . 

The features that are extracted from audio files are ap-

proximations of timbre. The feature extraction, distance 

computation and classification algorithms are implement-

ed in MATLAB
®
. 

2. FEATURE EXTRACTION 

This section describes the processes involved in feature 

extraction. More detailed explanation can be found on 

the cited references. 

2.1 Audio Preprocessing 

The input signal is assumed to be sampled at 22050 Hz, 

as specified in MIREX wiki
1
. The audio signal is normal-

ized and preprocessed to remove inaudible parts. The sig-

nal is then cut into frames with a window size 512 sam-

ples (~23 msec.) and hop size 512 samples. 

2.2 Timbre Component 

 

To compute timbre similarities it is necessary to extract 

features or descriptors from the audio signal. The ex-

tracted features should be able to capture the salient at-

tributes of timbre as the audio retrieval system can only 

             

                                                           
1
 http://www.music-

ir.org/mirex/wiki/2011:Audio_Music_Similarity_and_Retrieval 

be as good as the features it employs. In this work, we 

extract the following features: 1) Mel-frequency Cepstral 

Coefficients to model the spectral envelope [3], 2) spec-

tral contrast to describe the range between tonal and 

noise-like character [4], 3) sub-band flux to describe the 

temporal unfolding and shaping of sound spectra [5] and, 

4) other spectral features commonly used in the literature.  

2.2.1 Mel-frequency Cepstral Coefficients 

 

The normalized audio signals signal is divided into 

frames with a window size and hop size of 512 samples 

(~23 msec.). The length of the segment ensures that the 

segmented signal is pseudo-stationary while the hop size 

keeps the continuity of the segments. Next, a window 

function (e.g. Hanning window) is applied to each seg-

ment. This is necessary to reduce spectral leakage. The 

following steps are then performed to each segment: 

 

1. Calculate the power spectrum using FFT. 

2. Transform the power spectrum to Mel-scale us-

ing a filter bank consisting of triangular filters. 

3. Get the sum of the frequency contents of each 

band. 

4. Take the logarithm of each sum. 

5. Compute the discrete cosine transform (DCT) of 

the logarithms. 

2.2.2 Spectral Contrast 

 

The spectral contrast algorithm published in [4] is very 

similar to the MFCC algorithm. In our implementation, 

we still use the Mel-scale filters instead of octave-based 

filterbank to optimize the system since the output of this 

block is used for MFCC and spectral contrast. We use 

DCT to decorrelate the coefficients. 

   The raw spectral contrast features estimate the strength 

of spectral peaks, valleys and their differences in each 

sub-band. The strength of the peaks and valleys are esti-

mated by the average value in the small neighborhood 

around maximum and minimum value respectively, in-

stead of the exact maximum and minimum value them-

selves.   

2.2.3 Sub-band Flux 

A set of features called sub-band flux has been proposed 

by Alluri and Toivianen to represent the fluctuation of 

frequency content in octave-scaled bands of the spectrum 

[5]. 
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The division into sub-bands was obtained using a 10-

channel filterbank of octave-scaled fourth-order butter-

worth filters. The sub-bands are defined as follows: {0 ~ 

25Hz, 25 ~ 50Hz, 50 ~ 100Hz, 100 ~ 200Hz, 200 ~ 

400Hz, 400 ~ 800Hz, 800 ~ 1600Hz, 1600 ~ 3200Hz, 

3200 ~ 6400Hz, 6400 ~ 11025Hz} where the sample rate 

is 22050Hz. For each of the channels the spectral flux 

was computed using Euclidean distance between succes-

sive magnitude spectra. 

2.2.4 Spectral Distribution Descriptors 

 

In order to enhance the timbre model, a number of spec-

tral features are also derived. These features are based on 

the short time Fourier transform (STFT) and are calculat-

ed for every frame of sound. The use of spectral de-

scriptors were analyzed by [6] to describe timbral texture. 

The following features are also derived in our system: 

1. Spectral centroid – defined as the center of grav-

ity of the magnitude spectrum 

2. Spectral spread – defines the dispersion or 

spread of the magnitude spectrum 

3. Spectral skewness – describes the symmetry of 

the magnitude spectrum 

4. Spectral kurtosis – measures how “Gaussian” 

the magnitude spectrum looks like 

5. Spectral flatness – indicates whether the magni-

tude spectrum is flat or “spiky” 

6. Spectral flux – measures the amount of spectral 

leakage 

7. Spectral rolloff – defined as the frequency below 

which 85% of the magnitude distribution is con-

centrated 

8. Spectral brightness – measures the amount of 

energy above the cut-off frequency of 1500 Hz 

9. Spectral entropy – indicates the magnitude spec-

trum has predominant peaks or not 

2.2.5 Timbre Modelling 

 

We then model the distribution of the MFCCs for the au-

dio file using a Gaussian mixture model (GMM). In this 

work, we use a single Gaussian represented by its mean µ 

and covariance matrix Σ [7].  

 

3. MUSIC SIMILARITY ESTIMATION 

The feature distances are calculated separately. Before 

they are combined, each distance component is normal-

ized by removing the mean and dividing by the standard 

deviation of all the distances. Symmetry is obtained by 

summing up the distances in both directions for each pair 

of tracks [8].  

Distances between timbres are computed by compar-

ing the GMM models. We use symmetric Kullback-

Leibler (SKL) distance between two models [7]. The 

SKL distances are transformed into metric by getting the 

root of the logarithm for each distance measure.  

A direct approach to combine the feature distances is 

to compute a weighted sum of the individual distances. 

Each distance component is normalized by removing the 

mean and dividing by the standard deviation of all the 

distances. The system is then optimized by determining 

the appropriate weights for each distance component. Fi-

nally, all the distances are tabulated to form a full dis-

tance matrix. 

4. RESULTS 

This submission is an updated version of the algorithm 

submitted to MIREX 2011 AMS task. From the MIREX 

2011 data, the objective results are highly correlated with 

the human evaluation grades. Both objective and subjec-

tive results show that returning the 5 closest songs to a 

given query, 50% of the candidate songs belong to the 

same genre. For comparison, the best performing system 

[9] in MIREX 2011 returns 60% of the candidate songs 

from the same genre.  
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