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ABSTRACT

In this paper we describe a method of audio chord estima-
tion than does not rely on any machine learning technique.
We calculate a beat-synchronized spectrogram with high
time and frequency resolution. The sequence of chroma
vectors (CRP features based on constant-Q transform) ob-
tained from spectrogram is smoothed using self-similarity
matrix before the actual chord recognition. Binary chord
templates with 3 harmonics are used. Two heuristics are
applied to the resulting chord sequence to reduce the num-
ber of major-minor chord confusions and to remove single-
beat chords. The method is evaluated on the Isophonics [7]
and RWC Popular Music [5] datasets (318 tracks in total).

1. INTRODUCTION

Audio chord estimation is one of the most interesting tasks
in music information retrieval. Representation of audio
as a sequence of chords can be helpful for many other
tasks, and itself can provide valuable information to the
user. Chord recognition algorithms have been showing
great progress during last years. 12 out of 18 algorithms
that have participated the MIREX 2011 Audio Chord De-
scription task have achieved chord weighted average over-
lap ratio greater than 0.70, whereas in 2012 all participants
have overcome this barrier on the same dataset (which is
named as MIREX in Audio Chord Estimation results in
2012).

The majority of participating algorithms use machine
learning techniques to some extent, except one of the vari-
ants of the method by T. Cho and J. P. Bello [1], the method
proposed by T. Rocher et al. [12] and the method by de
Haas et al. [3]. But the usage of machine learning makes
the algorithm dependent on training data. Despite the fact
that the amount of available data is grownig last years, still
the available data cover only a small subset of world music.
Therefore, the development of an algorithm that could pro-
vide good quality of chord recognition without any training
makes sense.

The algorithm presented here is mostly resembles the
one submitted to MIREX Audio Chord Estimation 2012
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(denoted by NG1), but also has some differences. A sim-
ple detector of no playing chord was implemented. One
more heuristic was added to correct chords that only last
for one interval between 2 successive beats. Binary tem-
plates with 3 harmonics are used instead of hand-crafted
chord templates. Also all the parameters were tuned more
precisely than in our previous submission.

Two versions of this algorithm (NG1 and NG2) have
been submitted. NG2 differs from NG1 only in that it
also contains templates for maj7, min7 and dominant 7th
chords. It gives many confusions with simple major/minor
chords though, so it is submitted just for comparison.

2. SYSTEM DESCRIPTION

2.1 Tuning

2.1.1 Tuning frequency estimation

A very simple algorithm is used to estimate tuning fre-
quency of an audio record. It is similar to the one that
was described by Y. Zhu et. al. in [13]. This algorithm is
by no means the best one, but it has been chosen for the
ease of implementation.

The whole record is split into T sequential fragments.
Then the constant-Q transform is applied on each frag-
ment ti, i = 1, 2, ..., T with the following parameters: 240
frequency components per octave (or 20 components per
note), minimal component frequency equal to 220 Hz, span
of 4 octaves. Due to chosen (rather big) minimal frequency
this procedure is very fast for the whole file. On each frag-
ment ti we determine the position of maximal spectrum
value g(ti). Then a histogram of values of this function
is constructed. It has 960 bins. The histogram is then
folded to 10 bins: j-th bin of the original histogram con-
tributes to (j mod 10)-th bin of the collapsed histogram
for j = 0, 1, ..., 959. Then the position of maximal value
in the resulting histogram shows the deviation of the tuning
frequency from the base 440 Hz frequency in range from
-1/2 to +1/2 semitone (427.5 Hz to 452.9 Hz) with step of
1/20 semitone (maximum at 0th position corresponds to no
deviation). Calculated deviation is used further to specify
the tuning frequency for main constant-Q transform.

2.1.2 Beat positions estimation

To estimate the position of beats in a sound file, the Beat-
Root library [4] was used. We have also experimented
with beat trackers implemented as Vamp plugins by M.



Davies [2] and J. Oliveira [11], but the best results were ob-
tained using BeatRoot (and beat tracker by M. Davies for
the tracks on which BeatRoot fails to provide any result).
The sequence of beat positions is then made T times more
frequent by inserting T − 1 intermediate values evenly be-
tween each pair of successive beat positions. Therefore, if
the source sequence has n elements, then the resulting se-
quence will have T · (n − 1) + 1 elements. The value of
T = 8 was chosen.

2.2 Spectrogram calculation

Stereo wave file is converted to mono at first. Then for each
time position from the sequence of beats the constant-Q
transform on the fragment that is centered at this position
is performed. The transform has the following parameters:
36 frequency components per octave, 4 octaves span, min-
imal component frequency is 33 semitones below tuning
frequency. In case of standard tuning frequency 440 Hz the
minimal component has frequency 65.41 Hz (corresponds
to C2). The whole frequency range in this case spans from
65.41 Hz to 987.77 Hz. Given these parameter values the
spectrogram has 144 rows.

Then a median filter with window size w is applied to
each row of the spectrogram (each row corresponds to a
component frequency of constant-Q transform). Due to
very frequent sequence of time positions we can effectively
smooth the spectrogram while using only the values that
belong to a short time interval. Here the value w = 15 is
used, which corresponds to only 2 beats.

Then the spectrogram is simply decimated along the
time axis: each 8th column is preserved, all the others
are removed. High time resolution is redundant, because
chords often change along with the beats. But now the
decimated spectrogram also includes the information from
the whole interval between two successive beats.

2.3 Chroma reduction

The process proposed by Müller in [10] is applied here.
Each spectrogram value v is replaced with log10(50000 ·
v + 1). Then a discrete cosine transform of size 144 is
applied to each spectrogram column. The first 15 result-
ing coefficients are set to zero and the inverse DCT is per-
formed. This value is small compared with the one used
in [10], but it gives the best result in our case.

2.4 Smoothing using self-similarity matrix

This step is inspired by the works of T. Cho and J. P. Bello
[1] and M. Mauch et al. [9]. Both these approaches look
for the repetitive structures in the music to improve the re-
sulting sequence of chords. But in the proposed method
a self-similarity matrix is built for the sequence of spec-
trogram columns {pi}, not feature vectors. It is also not
required to have only diagonals.

Euclidean distance is used as a measure of similarity, so
the self-similarity matrix has zeroes on the main diagonal.
It is normalized, so that 0 ≤ sij ≤ 1 for any i, j. Then for
each row we preserve only M · n minimal values and set

all the others to 1 (here 0 ≤M ≤ 1). The value M = 0.08
was chosen.

Then the sequence of spectrogram columns is recalcu-
lated using the values from this matrix:

p̂i =

n∑
j=1

(1− sij) · pj
n∑

j=1

(1− sij)

2.5 Calculation of chroma vectors

This is the last step before the actual chord estimation.
At first, spectrogram columns are fold from 4 octaves to
1 octave. It is done by summing the rows with indexes
j, j + 36, j + 72, j + 108 for each j = 0, ..., 35 into one
row. This results in a sequence of 36-dimensional chroma
vectors {p̂i}ni=1. Each vector is then projected to 12 di-
mensions:

qi[j] =

1∑
h=−1

p̂i[3j−h]·d|h|, i = 0, ..., n, j = 0, ..., 11

The parameter d adjusts the contribution of spectral com-
ponents that do not correspond to real notes. We choose
d = 0.6. For the computation of qi[0] the components
p̂i[35] is substituted.

2.6 Chord estimation

Chord templates are used to determine the corresponding
chord for each chroma vector and the distance from a tem-
plate to a chroma vector is the Euclidean distance.

The templates for major and minor chords are used in
the proposed method. We used binary templates with 3
harmonics, where for i-th harmonic an amplitude of 0.6i−1

is added. Before distance calculation both template vector
and chroma vector are normalized to have unit length in
the Euclidean space.

For each spectrogram column the following coefficients
are calculated to detect the absence of the chord on a given
frame. Ktonal is a ratio of the sum of spectral compo-
nents corresponding to the note frequencies (given the tun-
ing frequency) to the sum of all components for a given
spectrogram column. Kmax is a ratio of maximum com-
ponent to the sum of all components. The columns where
Ktonal · Kmax < 0.0011 were treated as corresponding
to no chord playing. The limit value of 0.0011 was found
empirically. Also the sections of track before the first de-
tected beat and after the last detected beat plus the beat
length were marked as having no chord playing.

2.7 Additional correction

This step is introduced to decrease the number of the con-
fusions between chords that have the same root note but
different type (e.g. major and minor chords). Such chords
very seldom occur one after another. If the sequence of
chords has subsequences with this property, these subse-
quences are suspicious. They are corrected so that each
subsequence contains only the chords of one type. It is



Collection AOR WAOR Segmentation
Isophonics dataset 0.7824 0.7686 0.7836
2 datasets together 0.7640 0.7516 0.7907

Table 1. Recognition quality.

done by summing feature vectors from each subsequence
into a single vector, which is then matched against chord
templates and assigned to the corresponding subsequence.

Another heuristic was introduced to fix chord sequences
like (A, B, C), where 3 successive beats are marked with
3 different chords. Each similar sequence is replaced with
the one of (A, A, C), (A, C, C), (B, B, C), (A, B, B) for
which the sum the of distances from successive feature
vectors to corresponding chord labels is minimal. The se-
quences like (A, B, A) are replaced with (A, A, A).

3. EVALUATION

The algorithm was evaluated on the Isophonics [7] (180
songs by The Beatles, 20 songs by Queen and 18 songs
by Zweieck) and RWC Popular Music [5] datasets (100
tracks), 318 tracks in total.

For each track the Mirex2010 metric (as described in
[6]) was calculated. Then the chord average overlap ratio
(AOR) and chord weighted average overlap ratio (WAOR)
were calculated for the whole collection using following
formulae:

AOR =
1

C

C∑
i=1

mi, WAOR =

C∑
i=1

li ·mi

C∑
i=1

li

Here C is the number of tracks in the collection, mi and li
are the value of Mirex2010 metric and length for track m
correspondingly. We employ these 2 overlap ratios as the
measures of chord recognition quality. The segmentation
value was also calculated for each track (as it is defined
in [8]), as well as its average value for the whole collection.

Table 1 sums up the recognition quality shown by the
proposed method for the two collections mentioned above.

Surprisingly, smoothing using self similarity matrix was
more effective when dealing with the whole spectrogram
columns. Actually, they play the role of feature vectors
throughout this work. They are folded from 144 to 12 di-
mensions only at very end to make the matching with the
templates easier. Probably the introduction of chord tem-
plates of greater dimensionality can improve the result.

Even though the proposed algorithm has no learning
stage, its has some parameters, such as frequency range or
the number of CRP coefficients which are set to 0. These
parameters were set to obtain the best result on the whole
collection, but locally optimal values can be different for
each track. We believe that some procedure of automatical
adjustment of the parameters for each track before chord
recognition can have positve impact on the result. This is
another subject of future work.
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