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ABSTRACT

In the following we present a system for chord estimation,
based on a combination of a neural network and an Hid-
den Markov Model. The approach is based on Bengio et
al.’s [1] system for automated speech recognition and mod-
ified for musical chord estimation. The system consists of
a neural network with softmax activation, that is trained to
approximate Pitch Class Profiles from a constant Q trans-
form. An Hidden Markov Model is used to classify the
chords. Both are trained separately at first and then are
jointly optimized.

1. INTRODUCTION

Chord estimation describes the process of extracting musi-
cal chord labels from (wave form) encoded Music Pieces.
Hereby the specific chord and temporal position and du-
ration have to be automatically determined. Recent ap-
proaches include rule based recognition (e.g. [3]) or ma-
chine learning. A common approach for extraction of fea-
tures for machine learning based approaches are so called
pitch class profiles. In which the wave form signal is trans-
formed to the Fourier space, and the resulting frequency
distribution is aggregated according to the twelve base tones
of western tonality music (i.e. c,c#,d, etc.), where octave
multiples (frequency multiples) are aggregated to the same
“base-tone” bin. These resulting pitch class profiles are
then used as basis for classification.
There are different approaches for classification of chords
according to extracted features. Matthias Mauch uses dy-
namic Bayesian Networks [4] with extended pitch class
profile features (for base notes of the chords). A com-
mon approach for classification are variations of Hidden
Markov Models (e.g. [5,8] ). Or combination of classi-
fiers and rule based algorithms [2]. A different approach
is described in [6], in which an artificial neural net based
on pitch class profiles described above is used for chord
recognition (on a train and test set of only individual instru-
ments with individual chords, not complete mixed songs
with several instruments and several chords).

A similar domain is automatic speech recognition. Sim-

This document is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

(© 2010 The Authors.

John Ashley Burgoyne
University of Amsterdam
ILLC

ilar to Chord estimation a wave form audio signal is to be
analyzed and classified into different entities (e.g. words).
As in chord recognition a temporal dependency of phones
(atomic acoustic utterances) forming a word, and/or words
forming a sentence is a characteristic of the problem. In [1]
Bengio, De Mori, Flammia and Kompe propose a system
of a combination of Neural Networks (for feature extrac-
tion as basis for later classification) and an continuous den-
sity HMM for the final classification to incorporate time
dependency. Both are trained separately at first, thereafter
the authors describe a method of joint optimization through
gradient descent according to a global optimization crite-
rion (maximum likelihood).

In the following a proposition for a combined Neural Net-
work / Continuous density Hidden Markov Model as de-
scribed in [1] applied to musical chord estimation is given:
We first give an overview of the system’s components in
section 2, we then describe how to compute the optimiza-
tion criteria and computation of the gradient for the HMM
in section 3, section 4 describes how to update the neural
network according to the computed gradient and section
5 describes how the HMM can be updated, hereafter the
specific implementation is briefly described in section 6.

2. BASIC SYSTEM OUTLINE

Our system consists of two main components:

1. A continuous density HMM which estimates time
the temporal correlation of chord progressions and
performs the final classification.

2. A neural network with softmax activation, which is
trained to approximate the computation of normal-
ized Pitch Class Profiles from a constant Q trans-
form, which will be computed in a preprocessing
step.

Both are trained separately at first, the neural network
according to precomputed training data and the HMM on
basis of of the neural network output and ground truth chord
data.

After this a joint optimization is performed, based on
the gradient of the HMM according to a global optimiza-
tion criteria (maximum likelihood), the neural network’s
weights are adjusted. The emission probabilities are up-
dated on basis of the new neural network output, until the
system does not improve further.



3. GRADIENT OF THE HIDDEN MARKOV
MODEL

We define the emission probability b, of the HMM as fol-
lows:

by = P(Y3]St) ey

the probability of emitting the neural network output Y; in
state .Sy at time ¢ according to our state sequence deter-
mined by the training data.

The joint probability of state and observation sequence

is defined as:
T
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with 71 being the initial state probability, b; the probability
of emission as stated in equation 1, and a;_1 + the transition
probability from state S;_; to S;.
We want to maximize the log likelihood of the model
our optimization criteria:
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Similar to Bengio et al. in [1].

Since the transition probabilities are fixed by the pro-
vided ground truth, we take the partial derivative in respect
to by leaving us thus with:
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We rewrite the logarithm of the product as a sum of log-
arithms. Since the derivative in respect to b; does not affect
the initial state probability distribution, transition probabil-
ities or emission probabilities of the other states, these are
dropped, leaving us with:

“
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Since we are using a Continuous densities HMM, the
emission probability b; can be represented as a mixture of

Gaussians as described in [1]:
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where n is the number of Gaussian components per state
of the HMM, Zj,, ui and Xy the gain, mean and Covari-
ance matrix of Gaussian component k respectively.

4. ADJUSTING NEURAL NETWORK
PARAMETER

Since we are aiming to change the neural network parame-
ters according to the HMM optimization gradient, we need
to adjust the Neural network parameters as described in
bengio et al in [1].

Using the chain rule we take partial derivative of the
optimization criterion C' in respect to the neural network
output Y; ; for the j* component of the output at time ¢:
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Where aY
written as follows

’BY

5931}; Zmzdku(ukl Yir)) exp (— 5 (Ve — ) S5 (Y — ) T)
(®)

5. UPDATING HMM PARAMETERS

Rabbiner et al in [7] provides us with methods to update
continuous densities HMMs we can update the gain Zj,
for state j and component k as follows:
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The mean (1, for state j and component k can be com-
puted with:
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where O, the observation, specific neural network out-
put at time ¢.

The Covariance X, for state j and component k can be
computed with:
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~:(4, k) describes the probability of being in state j at
time t with the kth Gaussian mixture component:
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where the term d,; is 1 if j is equal to the state in our
ground truth data and O otherwise.

6. IMPLEMENTATION
6.1 Data Preprocessing

We first take the Fourier transform of the 44100 Hz with
a window size of 8192 samples with 2048 samples over-
lap. Thereafter the frequencies are further processed with
a constant Q transform with 36 bins per octave over 6 oc-
taves, ranging from approx 32.7 Hz (midi note 24) to ap-
prox. 2093 Hz (midi note 69. To take into account minor



pitch shifts, and further reduce the input space, we choose
a frame wise maximum of the respective bins to decide
which of the three CQT bin components to use for the ag-
gregation of a normalized Pitch Class Profile for this frame.

6.2 Neural Network

The neural network is trained to approximate the normal-
ized Pitch Class Profiles from the constant Q transform
values described the above (we only supply the constant
Q transform bins that are taken into account after the max-
imization for minor pitch shifts).

Since the Pitch Class Profile is normalized, we use a
softmax activation function for the output of the neural net-
work. The other nodes have a sigmoidal activation func-
tion.

The neural network contains 100 hidden nodes.

6.3 Hidden Markov Model

In the current system we try to estimate only major, minor
and none chords, thus leaving us with 25 possible chords,
one for each root node and chord type. These are modeled
as states in an ergodic Hidden Markov Model. Since major
and minor chords are determined by three musical notes,
the emission probabilities of each state in the HMM are
modeled by a mixture of three Gaussian. The HMM in turn
is trained on the output of the pretrained neural network.

6.4 Combined training

For the joint optimization of the neural network and the
HMM we iteratively adjust the neural network weights ac-
cording to the HMM gradient for the global optimization
criterion (as described above). After the neural network
weights are adjusted, we updated the HMM with the meth-
ods described in section 5 Every alternating neural network
weight adjustment and HMM update a test is performed
and the training is completed when the change in perfor-
mance of the system falls below a prior specified threshold.

7. REFERENCES

[1] Yoshua Bengio, Renato De Mori, Giovanni Flam-
mia, and Ralf Kompe. Global optimization of a neu-
ral network-hidden markov model hybrid. Neural Net-
works, IEEE Transactions on, 3(2):252-259, 1992.

[2] W Bas De Haas, José Pedro Magalhdes, and Frans
Wiering. Improving audio chord transcription by ex-
ploiting harmonic and metric knowledge. In Proceed-
ings of the 13th International Society for Music Infor-
mation Retrieval Conference (ISMIR), pages 295-300,
2012.

[3] Nikolay Glazyrin. Audio chord estimation using
chroma reduced spectrogram and self-similarity. Pro-
ceedings of the Music Information Retrieval Evalua-
tion Exchange (MIREX), 2012.

[4] Matthias Mauch. Automatic chord transcription from
audio using computational models of musical context.
2010.

[5] Yizhao Ni, Matt Mcvicar, Raul Santos-Rodriguez, and
Tijl De Bie. Harmony progression analyzer for mirex
2011. 2011.

[6] Julien Osmalsky, Jean-Jacques Embrechts, Marc
Van Droogenbroeck, and Sébastien Pierard. Neural
networks for musical chords recognition. In Journées
d’informatique musicale, 2012.

[7] Lawrence R Rabiner. A tutorial on hidden markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286, 1989.

[8] Yushi Ueda, Yuuki Uchiyama, Takuya Nishimoto,
Nobutaka Ono, and Shigeki Sagayama. Hmm-based
approach for automatic chord detection using refined
acoustic features. In Acoustics Speech and Signal Pro-
cessing (ICASSP), 2010 IEEE International Confer-
ence on, pages 5518-5521. IEEE, 2010.



