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ABSTRACT

In this submission for MIREX 2014 we utilize an effi-

cient latent variable model for multiple-F0 estimation and

note tracking, which uses a variable-Q transform as a time-

frequency representation. In contrast to the constant-Q

transform of the 2013 submission, the variable-Q trans-

form is able to provide a better temporal resolution in low

frequencies with the same frequency resolution. The model

is based on probabilistic latent component analysis and

uses pre-extracted note templates frommultiple instruments.

The templates are also pre-shifted across log-frequency in

order to support pitch deviations and frequency modula-

tions. In contrast to typical shift-invariant models which

need to perform convolutions for estimating model param-

eters, the present model avoids such computations by using

the aforementioned pre-shifted templates. Three system

variants are submitted: one trained on orchestral instru-

ments for multiple-F0 estimation, one trained on orches-

tral instruments and piano for note tracking, and a final one

trained on piano templates for piano-only note tracking.

1. INTRODUCTION

Automatic music transcription is the process of converting

an acoustic musical signal into some form of music nota-

tion [5]. The problem is considered to be one of the most

important ones in the field of music information retrieval

(MIR), with applications beyond the field, such as in com-

putational musicology. However, the creation of an auto-

mated system able to transcribe multiple-instrument poly-

phonic music without any constraints on instrument iden-

tities or on the level of polyphony continues to be an open

problem in the field [2].

In this MIREX submission for the Multiple-F0 Estima-

tion and Note Tracking tasks, we utilise the polyphonic

music transcription system that was first introduced in [1].

In contrast to last year’s submission though, which utilised

as input time-frequency representation the constant-Q trans-

form [6], in this submission we use a variable-Q transform
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(VQT), as proposed in [7]. Compared to the constant-Q

transform, the VQT is able to provide a better temporal res-

olution in low frequencies with the same frequency resolu-

tion. The model extends the probabilistic latent component

analysis method [8] by supporting the use of pre-extracted

and pre-shifted templates for multiple instruments. By us-

ing shift-invariance in the log-frequency domain, the sys-

tem can support the detection of small pitch changes, tun-

ing deviations, or frequency modulations. The employed

model is also a variant of the shift-invariant probabilis-

tic latent component analysis method cite Smaragdis09,

where the convolution operations only occur in a training

stage, thus making the model computationally efficient.

2. TRANSCRIPTION SYSTEM

2.1 Pitch template extraction

Pre-extracted and pre-shifted spectral templates are extracted

for various instruments, namely bassoon, clarinet, saxo-

phone, violin, flute, horn, oboe, guitar, cello, and piano.

For extracting the templates, we used isolated note sam-

ples from the RWC database [4]. As a time-frequency rep-

resentation, we use the variable-Q transform (VQT) time-

frequency representation proposed in [7], with a log-spectral

resolution of 60 bins per octave and γ = 30. A compari-

son between the constant-Q and variable-Q representations

can be seen in Figures 1 and 2, respectively, where the

lower pitches played by the bassoon are more clearly lo-

cated temporally for the VQT representation. For extract-

ing the templates, we used the standard PLCA model [8]

with one component. For pre-shifting the templates, we

shift each note template -40, -20, 20, and 40 cent from

the ideal tuning position (we also keep the original ideally

tuned template).

2.2 Transcription model

The proposed model takes as input a log-frequency spec-

trogram Vω,t (ω is the log-frequency index and t is the time

index) and approximates it as a bivariate probability distri-

bution P (ω, t). P (ω, t) is decomposed as:

P (ω, t) = P (t)
∑

p,f,s

P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)

(1)

where p is the pitch index in semitone scale, s is the in-

strument source index, and f is the log-frequency shift-

ing factor. P (t) is the log-spectrogram energy, which is a



known quantity. P (ω|s, p, f) are the pre-extracted and pre-
shifted log-spectral templates for instrument s and pitch p.

Pt(f |p) is the time-varying log-frequency shifting factor

for each pitch, which corresponds to one of the 5 shifts for

each note template (-40,-20,0,20,and 40 cent centered at

the ideal tuning position). Pt(s|p) is the instrument contri-

bution probability for each pitch at a given time frame, and

finally Pt(p) is the time-varying pitch activation, which is

used for estimating the final transcription.

Unknown model parameters (Pt(f |p), Pt(s|p), Pt(p))
can be estimated in an iterative fashion using the expectation-

maximization (EM) algorithm [3]. For the expectation step,

the following posterior is computed:

Pt(p, f, s|ω) =
P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)∑

p,f,s P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)
(2)

For the maximization step, unknown parameters are up-

dated using the posterior from (2):

Pt(f |p) =

∑
ω,s Pt(p, f, s|ω)Vω,t∑
f,ω,s Pt(p, f, s|ω)Vω,t

(3)

Pt(s|p) =

∑
ω,f Pt(p, f, s|ω)Vω,t∑
s,ω,f Pt(p, f, s|ω)Vω,t

(4)

Pt(p) =

∑
ω,f,s Pt(p, f, s|ω)Vω,t∑
p,ω,f,s Pt(p, f, s|ω)Vω,t

(5)

Eqs. (2)-(5) are iterated until convergence; for the sub-

mitted system we set the number of iterations to 30. As

in [1], we also enforced sparsity constraints on Pt(p) and
Pt(s|p) in order to control the polyphony level and the

number of instruments contributing to produced notes in

the resulting transcription. The resulting transcription is

given by P (p, t) = P (t)Pt(p). An example for the pitch

activation can be seen in Fig. 3. After performing 7-

sample median filtering for note smoothing, thresholding is

performed on P (p, t) followed by minimum note duration

pruning set to 40ms in order to convert P (p, t) into a binary
piano-roll representation. As an example, the P (p, t) is de-
picted for the first 10sec of the MIREX multiF0 woodwind

quintet. The flute trills in the upper register are particularly

evident.

The system is quite efficient computationally, being able

to produce a transcription in about 1.5 × real-time in a

Sony VAIO S15 laptop (e.g. for a 30sec recording it re-

quires 45sec). The code for the transcription model (using

the CQT as input) is available online 1 , both in a CPU-

based version as well as in a GPU-based version, which is

about 3 times faster.

2.3 System variants

Three variants of the system are utilized for the MIREX

2014 evaluation; one trained on the instruments listed in

subsection 2.1 minus piano for the multiple-F0 estimation

task (BW1), one trained on the complete instrument set

1 https://code.soundsoftware.ac.uk/projects/

amt_mssiplca_fast
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Figure 1. The constant-Q transform spectrogram for the

first 20sec of the MIREX multiF0 development recording.
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Figure 2. The variable-Q transform spectrogram for the

first 20sec of the MIREX multiF0 development recording.
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Figure 3. The pitch activation P (ω, t) for the first 20sec

of the MIREX multiF0 development recording.



for the note tracking task (BW2), and a system trained on

piano templates only for the piano-only note tracking task

(BW3).

3. RESULTS

The BW1 system ranked 2nd (out of 5 teams) for theMultiple-

F0 Estimation task. The BW2 system ranked 3rd (out of

8 teams) for the multi-instrument note tracking task. The

BW3 system ranked 2nd (out of 9 teams) for the piano note

tracking task. Compared to the submitted system by the

same team for MIREX 2013 (where the CQT was used as

T/F representation), an improvement of +3.61% in terms of

onset-offset F-measure is reported for the multi-instrument

Note Tracking task, and an improvement of +1.1% is re-

ported for the piano Note Tracking task. These results in-

dicate the increased temporal precision of the VQT repre-

sentation over the CQT.
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