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ABSTRACT

In this submission, audio descriptors which quantify se-
quential complexity are used to predict musical similarity
between pairs of tracks. We consider a data-driven ap-
proach for combining distances, where we estimate a reg-
ularised linear regression model.

1. INTRODUCTION

Our work in [2] forms the basis of this submission. The
system models audio as track-wise summary statistics com-
puted on frame-based features; Across considered audio
features we then compute pairwise distance measures be-
tween statistics. To predict musical similarity, we combine
pairwise distances using a linear model and then apply dis-
tance normalisation.

2. FEATURE EXTRACTION

For each track excerpt in the dataset, we extract a set of
25 audio features, using MIRToolbox [6] version 1.3.2 and
using the framewise chromagram representation proposed
by Ellis and Poliner [1]. With the exception of rhythmic
features, which are computed using predicted onsets, fea-
tures are based on a constant frame rate of 40Hz. Table 1
summarises the set of evaluated audio features.

3. FEATURE DESCRIPTORS

As a means of quantifying the sequential complexity of
the audio feature vector sequence V = (~v1, . . . , ~vT ), we
compute the compression rate Rλ(V),

Rλ(V) =
C(V, λ)

T
(1)

where C(V, λ) denotes the number of bits required to rep-
resent V, given a quantisation scheme with λ levels and
using a specified sequential compression scheme.
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Feature name Description
Chroma 12-component chromagram based on using

phase-derivatives to identify tonal compo-
nents in spectrum [1].

dynamics.rms Root mean square of amplitude.
rhythm.tempo Tempo estimate based on selecting peaks

from autocorrelated onsets.
rhythm.attack.time Duration of onset attack phase.
rhythm.attack.slope Slope of onset attack phase.
spectral.centroid First moment of magnitude spectrum.
spectral.brightness Proportion of spectral energy above

1500Hz.
spectral.spread Second moment of magnitude spectrum.
spectral.skewness Skewness coefficient of magnitude spec-

trum.
spectral.kurtosis Excess kurtosis of magnitude spectrum.
spectral.rolloff95 95th percentile of energy contained in

magnitude spectrum.
spectral.rolloff85 85th percentile of energy contained in

magnitude spectrum.
spectral.spectentropy Shannon entropy of magnitude spectrum.
spectral.flatness Wiener entropy of magnitude spectrum.
spectral.roughness Average roughness [8] between peak pairs

in magnitude spectrum.
spectral.irregularity Squared amplitude difference between suc-

cessive partials [5].
spectral.mfcc 12-component MFCCs [12] (excluding en-

ergy coefficient).
spectral.dmfcc First-order differentiated MFCCs.
spectral.ddmfcc Second-order differentiated MFCCs.
timbre.zerocross Zero crossing rate.
timbre.spectralflux Half-wave rectified L1 distance between

magnitude spectrum at successive frames
[7].

tonal.chromagram.centroid Centroid of 12-component chromagram.
tonal.keyclarity Peak correlation of chromagram with key

profiles [3].
tonal.mode Predicted mode after correlating chroma-

gram with key profiles.
tonal.hcdf Flux of 6-dimensional tonal centroid [4].

Table 1. Summary of evaluated audio features.

For each track, we compute compression rates on fea-
ture sequences extracted from musical audio. We refer to
the set of compression rates as feature complexity descrip-
tors (FCDs). For features based on constant frame rate, we
compute FCDs using the original feature sequence, in ad-
dition to FCDs computed on downsampled versions of the
original sequence. We consider the downsampling factors
{1, 2, 4, 8}. In addition to FCDs, for each track excerpt we
compute the mean and standard deviation, based on frame-
level representation with no downsampling applied. We
refer to such a ‘bag-of-features’ representation as feature
moment descriptors (FMDs).



4. DISTANCE MEASURES

We compute Euclidean distances and symmetrised Kullback-
Leibler (KL) divergences using 25 audio features and across
both descriptor classes: For each pair of tracks, we obtain a
total of 4×25 distances by computing Euclidean distances
between FCDs at 4 temporal resolutions; we obtain a total
of 2× 25 distances by computing Euclidean distances and
KL divergences between FMDs.

5. PREDICTING SIMILARITY

We predict musical similarity by computing a linear com-
bination of distances. We obtain our linear model by ap-
plying regularised regression to annotated pairwise simi-
larities, as described in [2]. Our submission differs as fol-
lows: We obtain audio and web-sourced tag annotations
for approximately 10 000 tracks, sampled to maintain di-
versity of genres and artists. We then apply latent semantic
analysis (LSA) to tag annotations, based on the method de-
scribed in [10]. We consider a projection of tag annotations
onto pairwise similarities between tracks as our response
variable, which we seek to model. Using the response vari-
able, we apply L2-regularised linear regression to pairwise
distances between descriptors, based on the Matlab GLM-
NET library 1 .

6. NORMALISATION

To compensate for tracks consistently deemed similar to
queries, we apply a two-step process. In the first step, we
normalise predicted pairwise similarities by computing z-
scores, as described in [9]. In the second step, we compute
mutual proximity with independent Gaussian distributions,
using the implementation described in [11].
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