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ABSTRACT

This paper presents a Bayesian nonnegative matrix fac-
torization (NMF) approach to extract singing voice from
background music accompaniment. Using this approach,
the reconstruction error based on NMF is represented by
a Poisson distribution and the NMF parameters, consist-
ing of basis and weight matrices, are characterized by the
exponential priors. A variational Bayesian expectation-
maximization algorithm is developed to learn variational
parameters and model parameters for monaural source sep-
aration. A clustering algorithm is performed to establish
two groups of bases: one is for singing voice and the other
is for background music. Model complexity is controlled
by adaptively selecting the number of bases for different
mixed signals according to the variational lower bound.

1. INTRODUCTION

This paper presents a new model-based singing-voice sep-
aration. The novelties of this paper are twofold. The
first one is to develop Bayesian approach to unsupervised
singing-voice separation. Model uncertainty is compen-
sated to improve the performance of source separation of
vocal signal and background accompaniment signal. Num-
ber of bases is adaptively determined from the mixed signal
according to the variational lower bound of the marginal
likelihood over NMF basis and weight matrices. The sec-
ond one is the theoretical contribution in Bayesian NMF.
We construct a new Bayesian NMF where the modeling
error in NMF is drawn from Poisson distribution and the
model parameters are characterized by exponential distri-
butions.

2. NEW BAYESIAN NONNEGATIVE MATRIX
FACTORIZATION

This study aims to find an analytical solution to full
Bayesian NMF by considering all dependencies of varia-
tional lower bound on regularization parameters. Regular-
ization parameters are optimally estimated.
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2.1 Bayesian Objectives

We adopt the Poisson distribution as likelihood func-
tion and the exponential distribution as conjugate prior
for NMF parameters Bmk and Wkn with hyperparame-
ters λbmk and λwkn, respectively. Maximum a posteriori
(MAP) estimates of parameters Θ = {B,W} are obtained
by maximizing the posterior distribution or minimizing
− log p(B,W|X) which is arranged as a regularized KL
divergence between X and BW

DKL(X||BW) +
∑
m,k

λbmkBmk +
∑
k,n

λwknWkn (1)

where the terms independent of Bmk and Wkn are treated
as constants. Notably, the regularization terms (2nd and
3rd terms) in this objective are nonnegative and seen as the
`1 regularizers [2] which are controlled by hyperparame-
ters {λbmk, λ

w
kn}. These regularizers impose sparseness in

the estimated MAP parameters.
However, MAP estimates are seen as point estimates.

The randomness of parameters is not considered in model
construction. To conduct full Bayesian treatment, BNMF
is developed by maximizing the marginal likelihood
p(X|Θ) over latent variables Z as well as NMF parame-
ters {B,W}∫ ∑

Z

p(X|Z,B,W)p(Z|B,W)p(B,W|Θ)dBdW (2)

and estimating the sparsity-controlled hyperparameters or
regularization parameters Θ = {λbmk, λ

w
mk}. The resulting

evidence function is meaningful to act as an objective for
model selection which balances the tradeoff between data
fitness and model complexity [1]. In the singing-voice sep-
aration based on NMF, this objective is used to judge which
number of bases K should be selected.

2.2 Variational Bayesian Inference

The variational Bayesian expectation-maximization (VB-
EM) algorithm is developed to implement Poisson-
Exponential BNMF. VB-EM algorithm applies the
Jensen’s inequality and maximizes the lower bound of the
logarithm of marginal likelihood

log p(X|Θ) ≥
∫ ∑

Z

q(Z,B,W) log
p(X,Z,B,W|Θ)

q(Z,B,W)

× dBdW = Eq [log p(X,Z,B,W|Θ)] +H[q(Z,B,W)]

(3)

where H[·] is an entropy function. The factorized vari-
ational distribution q(Z,B,W) = q(Z)q(B)q(W) is



assumed to approximate the true posterior distribution
p(Z,B,W|X,Θ).

2.2.1 VB-E Step

In VB-E step, a general solution to variational distribution
qj of an individual latent variable j ∈ {Z,B,W} is ob-
tained by [1]

log q̂j ∝ Eq(i6=j)
[log p(X,Z,B,W|Θ)]. (4)

Given the variational distributions defined by

q(Bmk) ∝ Gam(Bmk;αb
mk, β

b
mk)

q(Wkn) ∝ Gam(Wkn;αw
kn, β

w
kn)

q(Zmkn) ∝ Mult(Zmkn;Pmkn)

(5)

the variational parameters {αb
mk, β

b
mk, α

w
kn, β

w
kn, Pmkn} in

three distributions are estimated by

α̂b
mk = 1 +

∑
n

〈Zmkn〉, β̂b
mk =

(∑
n

〈Wkn〉+ λbmk

)−1

α̂w
kn = 1 +

∑
m

〈Zmkn〉, β̂w
kn =

(∑
k

〈Bmk〉+ λwkn

)−1

P̂mkn =
exp(〈logBmk〉+ 〈logWkn〉)∑
j exp(〈logBmj〉+ 〈logWjn〉)

(6)

where the expectation function Eq[·] is replaced by 〈·〉 for
simplicity. By substituting the variational distribution into
Eq. (3), the variational lower bound is obtained by

BL = −
∑

m,n,k

〈Bmk〉〈Wkn〉

+
∑
m,n

(− log Γ(Xmn + 1)−
∑
k

〈Zmkn〉 log P̂mkn)

+
∑
m,k

〈logBmk〉
∑
n

〈Zmkn〉+
∑
k,n

〈logWkn〉
∑
m

〈Zmkn〉

+
∑
m,k

(log λbmk − λ
b
mk〈Bmk〉) +

∑
k,n

(log λwkn − λ
w
kn〈Wkn〉)

+
∑
m,k

(−(α̂b
mk − 1)Ψ(α̂b

mk) + log β̂b
mk + α̂b

mk + log Γ(α̂b
mk))

+
∑
k,n

(−(α̂w
kn − 1)Ψ(α̂w

kn) + log β̂w
kn + α̂w

kn + log Γ(α̂w
kn))

(7)

where Ψ(·) is the derivative of the log gamma function,
and is known as a digamma function.

2.2.2 VB-M Step

In VB-M step, the optimal regularization parameters Θ =
{λbmk, λ

w
kn} are derived by maximizing Eq. (7) with re-

spect to Θ and yielding

∂BL
∂λbmk

=
1

λbmk

− 〈Bmk〉+
∂ log βb

mk

∂λbmk

= 0

∂BL
∂λwkn

=
1

λwkn
− 〈Wkn〉+

∂ log βw
kn

∂λwkn
= 0.

(8)

Accordingly, the solution to BNMF hyperparameters is de-
rived by solving a quadratic equation where nonnegative

constraint is considered to find positive values of hyperpa-
rameters by

λ̂bmk =
1

2

(
−
∑
n

〈Wkn〉+

√
(
∑
n

〈Wkn〉)2 + 4

∑
n〈Wkn〉
〈Bmk〉

)

λ̂wkn =
1

2

(
−
∑
m

〈Bmk〉+

√
(
∑
m

〈Bmk〉)2 + 4

∑
m〈Bmk〉
〈Wkn〉

)
(9)

where 〈Bmk〉 = αb
mkβ

b
mk and 〈Wkn〉 = αw

knβ
w
kn are ob-

tained as the means of gamma distributions.

2.3 Poisson-Exponential Bayesian NMF

In this study, total number of basis vectors K is adaptively
selected for individual mixed signal according to the vari-
ational lower bound in Eq. (7) with the converged varia-
tional parameters {α̂b

mk, β̂
b
mk, α̂

w
kn, β̂

w
kn, P̂mkn} and model

parameters {λ̂bmk, λ̂
w
kn}.

Considering the pairs of likelihood function and prior
distribution in NMF, the proposed method is also called
the Poisson-Exponential BNMF.

2.4 Unsupervised Singing-Voice Separation

We implemented the unsupervised singing-voice separa-
tion where total number of bases (K) and the grouping of
these bases into vocal source and music source were both
learned from test data in an unsupervised way. We conduct
NMF-based clustering for the proposed BNMF method. To
do so, we transformed the basis vectors B into Mel-scaled
spectrum to form the Mel-scaled basis matrix. ML-NMF
was applied to factorize this Mel-scaled basis matrix into
two matrices B̃ of size N -by-2 and W̃ of size 2-by-K.
The soft mask scheme based on Wiener gain was applied to
smooth the separation of B into basis vectors for vocal sig-
nal and music signal. This same soft mask was performed
for the separation of mixed signal X into vocal signal and
music signal based on the K-means clustering and NMF
clustering. Finally, the separated singing voice and music
accompaniment signals were obtained by the overlap-and-
add method using the original phase.

3. CONCLUSIONS

We proposed a new unsupervised Bayesian nonnegative
matrix factorization approach to extract the singing voice
from background music accompaniment and illustrated the
novelty on an analytical and true optimum solution to the
Poisson-Exponential BNMF. Through the VB-EM infer-
ence procedure, the proposed method automatically se-
lected different number of bases to fit various experimental
conditions.
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