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ABSTRACT

In this paper, we explore using deep recurrent neural net-
works for singing voice separation from monaural record-
ings in a supervised setting. We propose jointly optimizing
the networks for multiple source signals by including the
separation step as a nonlinear operation in the last layer.
Discriminative training objectives are further explored to
enhance the source to interference ratio. The algorithm has
been tested against the MIREX 2014 singing voice separa-
tion task.

1. INTRODUCTION

Based on the work in [6], in this paper, we explore the
use of deep recurrent neural networks for the MIREX 2014
singing voice separation task. We explore using a deep
recurrent neural network architecture along with the joint
optimization of the network and a soft masking function.
The proposed framework is shown in Figure 1.

2. PROPOSED METHODS
2.1 Deep Recurrent Neural Networks

To capture the contextual information among audio sig-
nals, one way is to concatenate neighboring features to-
gether as input features to the deep neural network. How-
ever, the number of parameters increases rapidly according
to the input dimension. Hence, the size of the concatenat-
ing window is limited. A recurrent neural network (RNN)
can be considered as a DNN with indefinitely many lay-
ers, which introduce the memory from previous time steps.
The potential weakness for RNNs is that RNNs lack hier-
archical processing of the input at the current time step. To
further provide the hierarchical information through multi-
ple time scales, deep recurrent neural networks (DRNNs)
are explored [2,7].

Formally, we can define different schemes of DRNNs as
follows. Suppose there is an L intermediate layer DRNN
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Figure 1. Proposed framework.

with the recurrent connection at the [-th layer, the [-th hid-
den activation at time ¢ is defined as:

hf& = fh/(xb hé—l)

= ¢ (U'h}_, + Wg (W' (61 (W'xy))))
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and the output, y;, can be defined as:

yt = fo(hi)
=W (W (g (WRY))), (@

where x; is the input to the network at time ¢, ¢; is an
element-wise nonlinear function, W' is the weight matrix
for the I-th layer, and U’ is the weight matrix for the re-
current connection at the [-th layer. The output layer is a
linear layer.

Function ¢;(+) is a nonlinear function, and we empir-
ically found that using the rectified linear unit f(x) =
max(0,x) [1] performs better compared to using a sig-
moid or tanh function. For a DNN, the temporal weight
matrix U’ is a zero matrix.

2.2 Model Architecture

At time ¢, the training input, x;, of the network is the con-
catenation of features from a mixture within a window. We
use magnitude spectra as features in this paper. The out-
put targets, y1, and yz,, and output predictions, y;, and
¥2,, of the network are the magnitude spectra of different
sources.

Since our goal is to separate one of the sources from a
mixture, instead of learning one of the sources as the tar-
get, we adapt the framework from [5] to model all different
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Figure 2. Proposed neural network architecture.
sources simultaneously. Figure 2 shows an example of the

architecture.
Moreover, we find it useful to further smooth the source

separation results with a time-frequency masking technique,

for example, binary time-frequency masking or soft time-
frequency masking [4, 5]. The time-frequency masking
function enforces the constraint that the sum of the pre-
diction results is equal to the original mixture.

Given the input features, x;, from the mixture, we ob-
tain the output predictions ¥1, and ¥2, through the net-
work. The soft time-frequency mask m, is defined as fol-
lows:

91.(f)!
my(f) = — - ; (3)
D= 5+ )
where f € {1,..., F'} represents different frequencies.

Once a time-frequency mask m; is computed, it is ap-
plied to the magnitude spectra z; of the mixture signals to
obtain the estimated separation spectra 8¢, and 83,, which
correspond to sources 1 and 2, as follows:

81,(f) = my(f)za(f)
80, (f) = (1 — my(f)) ze(f), @

where f € {1,..., F'} represents different frequencies.

The time-frequency masking function can be viewed as
alayer in the neural network as well. Instead of training the
network and applying the time-frequency masking to the
results separately, we can jointly train the deep learning
models with the time-frequency masking functions. We
add an extra layer to the original output of the neural net-
work as follows:
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where the operator © is the element-wise multiplication
(Hadamard product). In this way, we can integrate the
constraints to the network and optimize the network with
the masking function jointly. Note that although this extra
layer is a deterministic layer, the network weights are op-
timized for the error metric between and among y1,, Y2,
and y1,, y2,, using back-propagation. To further smooth
the predictions, we can apply masking functions to y1, and
Y2, as in Egs. (3) and (4), to get the estimated separation
spectra S;, and Sg,. The time domain signals are recon-
structed based on the inverse short time Fourier transform
(ISTFT) of the estimated magnitude spectra along with the
original mixture phase spectra.

2.3 Training Objectives

Given the output predictions §1, and §2, (or 1, and ¥2,)
of the original sources yi, and y2,, we explore optimiz-
ing neural network parameters by minimizing the squared
error, as follows:

-yz2,l3. (6

Furthermore, minimizing Eq. (6) is for increasing the
similarity between the predictions and the targets. Since
one of the goals in source separation problems is to have
high signal to interference ratio (SIR), we explore discrim-
inative objective functions that not only increase the sim-
ilarity between the prediction and its target, but also de-
crease the similarity between the prediction and the targets
of other sources, as follows:
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where v is a constant chosen by the performance on the
development set.

3. EXPERIMENTS
3.1 Setting

Our system is trained using the MIR-1K dataset [3]' and
the stereo audio dataset. > In the MIR-1K dataset, we ran-
domly select 8 song clips as the development set and train
on the remaining 992 song clips. In the stereo audio dataset,
we mix 52 music clips with 20 randomly selected speech
files to generate 1040 clips. We select 10 clips as the de-
velopment set and the remaining 1030 clips for training.

For training the network, in order to increase the va-
riety of training samples, we circularly shift (in the time
domain) the singing voice signals and mix them with the
background music.

In the experiments, we use magnitude spectra as input
features to the neural network. The spectral representation
is extracted using a 1024-point short time Fourier trans-
form (STFT) with 50% overlap. Empirically, we found
that using log-mel filterbank features or log power spec-
trum provide worse performance.

Uhttps://sites.google.com/site/unvoicedsoundseparation/mir-1k
2 http://www.isle.illinois.edu/sst/pubs/2014/chen14audiosources. txt



For our proposed neural networks, we optimize our mod-
els by back-propagating the gradients with respect to the
training objectives. The limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm is used to train the
models from random initialization. We set the maximum
epoch to 600 and select the best model according to the
development set.

We use a deep recurrent neural network with 3 hidden
layers of 1000 hidden units, the recurrent connection at the
2nd hidden layer, the mean squared error criterion, joint
masking training, and 25 K samples as the circular shift
step size using features with a context window size of 3
frames. We select the models based on the GNSDR results
on the development set.
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