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ABSTRACT 

This paper presents some concepts regarding the optimiza-

tion of chord detection algorithms based on chromagrams. 

The main goal of chord detection is to transcribe an audio 

recording of a piece of harmonic music into a musical 

score containing chord notations. Within a piece of music, 

a chord is very rarely alone, and a common failing of chord 

detection using chromagrams is to consider each chord in-

dividually and as isolated information. A piece of music is 

usually composed of connected and evolving structures, 

following specific musical rules and conventions: in this 

context, the issue is not only to detect separate chords, but 

use the musical context and accepted musical practice to 

improve the overall result, leading to a reasonable chord 

progression. Taken alone, each chord detection, structure 

analysis and appraisal of musical key, can be difficult 

problems to solve, but this paper will show how the differ-

ing analytical methods can interact with one another to op-

timize a chromagram-based chord detection algorithm. 

1. INTRODUCTION 

The field of automatic metadata extraction from music 

poses many different problems of detections. The specific 

problem of chord detection can be solved in many different 

ways. The most famous one seems to be the matching of 

chroma-vectors according to [1]. This simple technique 

gives good results with simple situations. But when the 

bands get bigger, when the sound is more processed, we 

must find a way to improve results keeping that infor-

mation. 

Before researching for completely new methods, we 

should understand all boundary conditions. That is why the 

following algorithm will keep the base of chroma-vector 

extraction, and optimize the results not seeing the problem 

as a local problem, but as a global problem. 

If we consider the problem of chord detection in the 

specific situation of a song, we have a lot more information 

than only a small audio segment; we have a list of chords. 

We can be sure this list is not composed of random chords. 

It is likely written by humans following rules and fashions. 

Music theory explains the constraints. So why not use 

them to help us with our problem? 

2. PERFORMANCE EVALUATION 

The goal of an optimization is to increase the number of 

good results. But this optimization can have side effects 

we have to determine to accept it or not. This is why an 

evaluation is needed to understand how an optimization 

will affect the result. 

All the results presented in this paper are processed by 

comparing the generated chord list of our algorithm with a 

reference annotation dataset. The reference dataset we 

used is The Beatles 180 songs. This famous dataset follows 

the annotation is defined by [3] and was introduced by 

Harte’s PhD [4]. 

To determine the performances results, we have to 

compare our results with a reference using a metric. Of 

course, the first metric would be to evaluate the number of 

good results by exact matching of chords. According to [2] 

the chord symbol recall (CSR) is a good metric to evaluate 

performances of good results. 

But the mentioned metric does not provide any infor-

mation about errors. In chord detection, errors do not al-

ways have the same importance. That is why others met-

rics were used, such as the chord match recall (CMR). 

The second metric is processed the same way as CSR 

but is not using the same distance. CSR uses the distance 

of 0 if two chords are exactly the same, and the distance of 

1 if the symbols are different. In the case of CMR, the dis-

tance is the matching percentage of chords vectors. A 

chord vector is composed of 12 binaries values corre-

sponding to basic chroma-vector of a chord. Some exam-

ples of template chord vectors are available Table 3 for 

each mode. 

For two chord vectors named u and v, the CMR is defined 

by the given correlation coefficient formula (1): 

vu

vu
CMR




       (1) 

The distance between two identical chords is still 0, but 

if the chords are different, the value is between 0 and 1. 

The result is calculated by processing the normalized cor-

relation of chord templates. Examples of results are a dis-

tance of 0.33 for C and Amin; 0.66 for C and F; 0.85 for C 

and C7.  



  

 

The CMR provides more information about mistakes 

and is not directly correlated to CSR. An optimization is 

judged to be good when the CSR increases without de-

creasing CMR. All depends on the goal: more good results, 

or less important mistakes. 

3. OVERVIEW OF THE ALGORITHM 

The algorithm works in a classic way, related to what we 

find in the field of computer vision, or biometric identifi-

cation and authentication. The first step is to extract fea-

tures from the audio song, in which chromagrams are cal-

culated with various different temporal window sizes and 

offsets, in order to extract as much information as needed. 

The next step matches the chroma-vectors with models to 

calculate chord probabilities. Then we use a statistic anal-

ysis to give a meaning to all of the extracted features and 

probabilities. The final step is to determine what the result 

is according to the available information. 

The presented algorithm uses a chord positioning algo-

rithm to detect the position of chords in a song. This chord 

positioning algorithm utilizes a beat tracking algorithm 

and a state-of-the-art method to merge the beats. 

The chord detection algorithm can be improved by all 

the optimization based on other features extraction from a 

song. Other famous processes such as structure detection, 

key detection, and beat detection can be seen as related 

processes in a way. Linking all these processes improves 

the results of all improve all individuals. We will see how 

in the following sections.  

4. EXTRACTING THE CHROMA FEATURES  

Before starting the extraction, a simple audio file is nor-

malized and mixed down to make it as independent as pos-

sible from the original source. Then, the feature extraction 

begins with spectrum processing and chroma-vector ex-

traction. 

4.1 Optimization of the Spectrum 

Before computing a spectrum, we apply a temporal win-

dow to the signal. The quality of final performances will 

depend on the shape of the window. Some normalized per-

formance results are available in Table 1. We can see that 

Kaiser or Bartlett gives the best results. All depends on 

what measure we prefer to use. 

 
Name CSR CMR 

Nothing 61% 38% 

Hamming 81% 90% 

Bartlett 86% 100% 

Hann 50% 58% 

Blackman 0% 0% 

Kaiser α=2,5 100% 87% 

Table 1. Normalized performance results for windows. 

 

The next step is to calculate the spectrum in a classic 

way using the Fast Fourier Transform (FFT). The spec-

trum allows us to see some chords, but it is dangerous to 

use it directly. A chord is composed of multiple harmonic 

sounds. This means that the spectrum will contain multiple 

fundamentals and formants mixed together. More gener-

ally, some inharmonic sounds can also be mixed. In pop 

music, drum and synths that produces such sounds are 

most common and can really change the spectrum. That is 

why we considered two ways to improve the spectrum be-

fore reading it. 

The first process is de-noising. This process cleans the 

spectrum by removing small and fast variation of fre-

quency magnitude. To do this, we compute a spectral en-

velope reference with the spectrum using a low-pass filter. 

Then, we keep only what is over this envelope. 

The second processing is whitening. The goal is to 

make the spectrum looking like a white noise, by improv-

ing the magnitude values when needed. The processing 

simply consists to calculate the same spectral envelope as 

the Denoiser, but now dividing the entire spectrum by it. 

Some normalized performances results are available Table 

2. 

 

 With Denoiser Without Denoiser 

With Whitening 87% 100% 

Without Whitening 26% 0% 

Table 2. Normalized CMR performances results with 

spectrum post-processing 

Some other techniques like the Harmonic Product 

Spectrum (HPS) can be used too. All depend on what kind 

of source we have. See the paper [6] for more information 

about other possible spectrum optimizations. 

4.2 Chroma-Vector Extraction 

After the spectrum processing, it is time to compute the 

chroma-vectors. The chroma-vector is a 12 energy values 

vector corresponding to the 12 possible pitches (C, C#, D, 

D#, E, F, F#, G, G#, A, A#, B). Each value is computed by 

doing the sum of all spectrum magnitudes corresponding 

to all different notes. This way, we are already able to read 

easily some chords when the sound is clean. See figure 1 

for an example of chroma-vectors we can get from the C 

Major chord. 

 

 

Figure 1. Chroma-vectors calculated for the reference 

chord of C Major. 
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4.3 Solving Tuning issues 

One problem that has to be solved now is the tuning issue. 

Indeed, all records do not tune their A4 to 440Hz. In clas-

sical music, the tune wasn’t always this one. It evolved for 

centuries between 420 and 450 Hz that can be really close 

to G # at 415Hz. 

The solution here is to consider two possibilities: the 

normal way of a 440Hz tune, and the other where all is 

tuned quarter-ton lower. In this case, the result will always 

be good, or always a ton lower but will not switch between 

lower and higher during the song. 

To determine which one between the tuned and the nor-

mal chroma-vector we use, we just compare the global dy-

namics of the vectors. The more dynamics we have, the 

more we will be able to determine which chord it is. 

5. STATISTIC ANALYSIS 

Now we have our clean spectrums, our chroma-vectors, we 

just need to give them a sense. The first step is to match 

the chroma-vector with all possible chords to process a 

matching score for all chords. After that, we determine the 

bass pitch from the spectrum. This is going to give us a 

first probability for each chord to be the right one. 

5.1 Determine the chord probabilities 

To determine the score of matching of each reference 

chord with the chroma-vector, we process the scalar prod-

uct between the chroma-vector and each shifted chord 

mode reference vectors for each fundamental. The results 

can be stored in a matrix 12*(Number of Modes). 

The reference chord vector is like a chroma-vector, but 

only with the main components of the chords. For exam-

ple, Major is (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0). For less com-

mon chords, the result is multiplied by a coefficient to re-

duce the score. For example, bests results are get if we 

multiply the score of Diminished chords by 0.9. The refer-

ence used is presented Table 3. 

 

Chord Template Coefficient 
Major 1 0 0 0 1 0 0 1 0 0 0 0 100% 

minor 1 0 0 1 0 0 0 1 0 0 0 0 100% 

Sus4 1 0 0 0 0 1 0 1 0 0 0 0 90% 

Sus2 1 0 1 0 0 0 0 1 0 0 0 0 90% 

Dim 1 0 0 1 0 0 1 0 0 0 0 0 100% 

Aug 1 0 0 0 1 0 0 0 1 0 0 0 100% 

Maj7 1 0 0 0 1 0 0 1 0 0 0 1 70% 

7 1 0 0 0 1 0 0 1 0 0 1 0 70% 

min7 1 0 0 1 0 0 0 1 0 0 1 0 70% 

min6 1 0 0 1 0 0 0 1 0 1 0 0 70% 

min7/b5 1 0 0 1 0 0 1 0 0 0 1 0 70% 

minj7 1 0 0 1 0 0 0 1 0 0 0 1 70% 

Sus4/7 1 0 0 0 0 1 0 1 0 0 0 1 70% 

Sus2/7 1 0 1 0 0 0 0 1 0 0 0 1 70% 

Dim6 1 0 0 1 0 0 1 0 0 1 0 0 70% 

Maj7/#5 1 0 0 0 1 0 0 0 1 0 0 1 70% 

Table 3. Modes templates for chords matching 

In our case, we decided to detect 8 or 16 different chord 

modes. The first eight are the most commons in pop song 

(Major, minor, Diminished, Augmented, 7th, 7th Major, mi-

nor 7th and minor 7th Major). The others chords are less 

common but can be important in some kinds of music 

(Suspended 2 or 4 with 7th or not, Minor 6th, Minor 7th/b5, 

Diminished 6th and Major 7th/#5). 

 

5.2 Neural Networks 

Another method to give a meaning of a chroma-vector is 

to use a neural network. This kind of automatic learning 

process always requires a reference dataset for the learning 

period. A training dataset of 4608 audio chords was gener-

ated by Halion 4, containing 28 different common instru-

ments playing in 16 different modes. These data were used 

to train many perceptron corresponding to each different 

mode.  

After the learning process, the network was able to an-

swer with a very low False Rejection Rate (FRR) for solo 

instruments. The most the chord was specific, the lowest 

the FRR was. On the other hand, the False Acceptance 

Rate (FAR) was too high to believe the network in case of 

acceptance. It can be explained by the small differences 

between chords chroma-vectors and the close link between 

some chords. 

We concluded that the use of neural networks was good 

to help us to validate chord detection, especially for un-

common chords. But it does not provide any information 

about how sure the answer is. In consequence, this im-

provement could be only one element involved in our anal-

ysis to help us for our final decision. 

5.3 Determine the bass 

The most important data to improve the chord probability 

is to determine the value of the bass. In pop music, the bass 

is most of the time related to the chord. For example, the 

most obvious way would be to think that the bass can be 

the fundamental. So if we detect a C Major chord and a 

bass playing a C, the probability of C Major to be the right 

one is higher. This is not working if the bass is changing 

all the time (walking bass is a good example). That is why 

we need a special strategy to determine the main bass of 

the chord. 

Determining the bass with a spectrum looks simple, be-

cause it correspond to the first big pitch magnitude. The 

question is to determine how big it is. Goods results can be 

gotten with the first magnitude over 66% of the maximum 

magnitude. But this will not work with all instruments and 

all songs. 

Some instruments have other pitch frequencies before 

their fundamental. One solution could be to search for har-

monics to validate the fundamental value. In our case, we 

just determined the best practice by combining the bass de-

termination to the chord detection evaluation. 



  

 

5.4 Sub-windows strategy 

To improve the chord probabilities and the bass detection, 

we can split our chord signal into sub-windows and pro-

cess 4.1 and 4.2 on it. The goal after that is to merge results 

to get a more stable answer on chord probabilities, and bass 

probability. 

To split our signal, we simply divide our windows into 

smaller overlapping sub-windows. In our case, we try to 

split it in regular sub-windows with the size of 0.2 seconds, 

and complete them with a minimal zero-padding to have a 

size corresponding to a power of two if needed. 

It is important to determine a weighting strategy to 

merge the results to increase the importance of sub-win-

dows in the beginning of the chord for example. 

There are other possibilities to determine the position 

of the sub-windows like doing local hit-point detection. 

The local hit-point detection can be done by processing the 

difference between a fast and a slow integrator, and search-

ing for local maximums of it. This way, we are able to 

adapt dynamically the position of sub-windows, removing 

partially the effect of the drums and other rhythmic noises 

by concentrating it to fewer sub-windows. But this solu-

tion can create wrong results for example in the case of 

arpeggios. 

 

This statistic analysis gives us a first probability matrix 

for each chord to be the real one. But it was considering 

the chord as local information. However, most of the time 

a chord isn’t alone. And the other chords probabilities are 

other information we can use globally to improve the de-

tection. 

6. KEY DETECTION 

As explained in the previous part, when we are looking for 

a chord in a part of the song, we split this part in sub-win-

dows. Each sub-window gives a result of chord probabili-

ties. One good optimization to eliminate some bad estima-

tion would be to use the problem of key detection. 

Indeed, the problem of key detection can be solved 

with some methods like described in [7]. Using this 

method, we detect the local key around the chord we are 

processing to get more information about chord probabili-

ties. Indeed, some chords are more or less possible depend-

ing to the tonality. A good way to process chord probabil-

ity is to match the chord template vector with the tonality 

template vector. The tonality template vector contains all 

possible notes of the tonality. 

For example, the C tonality has the following template: 

(1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1). A basic normalized scalar 

product is used to determine the relation between a chord 

and a tonality. So, in the C tonality, the probability to have 

a Dm is 100%; D is 66%; C7 is 75% and so on. 

7. CHORD PROGRESS PROBABILITY 

Two of mains elements in instrumentals pop songs are the 

melody, and the chord progressions. The chords character-

ize the song with its evolution. What people usually mainly 

remain is how chords evolve between them, not the precise 

note value of the key or the precise speed they evolve. That 

is why music theory brings some rules about what people 

could usually do with the chord progression. This way, we 

are able to compute some references chord progression 

probabilities, and use them. One other way to compute 

those probabilities is to learn progression statistics from a 

dataset. This idea consists in a way to see the problem of 

chord progression as a Markov chain. That what are doing 

some studies like [8] using additional features. 

In our case, we focused to the most general way that 

was to use music theory. The system used is a derived ver-

sion of the Steinberg Chord Assistant present inside 

Cubase 7.5. Processing the probabilities of chord progres-

sion was done using some references full cadence models 

(for example I-IV-V-I). At first, each cadence defines 

some progression probabilities considering all possible po-

sitions. In a second way, we consider all progressions with 

the relative substitutes to increase the possibilities to 

switch between modes. All those rules are extracted from 

music theory, and succeeded to give us more information 

about the next chord probabilities. 

8. STRUCTURE ANALYSIS 

At last but not least, the problem of structure detection is 

really interesting for chord detection from pop songs. In-

deed, most of the errors of chord detection are dues to dif-

ficulties like a drum, or voice too present on the record. 

Most of pop songs are made of repeating parts like verses 

and refrains. Those parts are mostly made with the same 

chords. A small mistake of chord detection can be solved 

this way by associating all parts together, and analyzing 

what is abnormally different.  

8.1 Detecting the structure 

The first step in this optimization and the biggest one is to 

detect the song structure. Some technics like [9] and [10] 

gives good results, and shows that one of the most im-

portant common points between same parts is the spectro-

gram content. Using this information, a simple structure 

detection algorithm can be made using the already detected 

chords. This way, we do not search for structure directly 

inside the song, but inside the chord list. 

The most important in the chord structure detection is 

to evaluate when a chord part is the same as another. To 

allow our detection to keep working with some random 

chord detection mistakes, we have to think about a metric 

for chord parts comparison. One simple solution is to pro-

cess the percentage of time when the parts are transcript 

with the exact same chord symbols. It is an analog way of 

processing the CSR. One other solution is to use the CMR 



  

 

metric to process the matching score. Others metrics can 

be used, such as replacing the mode template of CMR by 

a mean of chords chroma-vectors. The question after that 

is to fix how combining it, and defining a threshold to de-

termine how permissive we are. 

One other choice we have to do concern the size of the 

parts we want to detect. All depends if we prefer to detect 

a structure with a few big parts, or a lot of small parts. In 

our case, we would prefer small parts to have more chord 

material for our following correction.  

8.2 Quality evaluation of song structure 

Before using a song structure, it is important to evaluate 

the quality of it. The reason is that the optimization has to 

work with all songs, including those without logic struc-

ture. The evaluation determines if it is pertinent to use the 

detected structure to correct the chord list. The decision is 

depending on the quantity of different parts, the percentage 

of the song covered by the structure, and the mean of dis-

tance between each parts iterations. 

8.3 Chords corrections 

After processing the structure of the song, it is easy to cor-

rect the possible errors of the chords detection with it. The 

strategy we used is to mean all parts iterations, and to 

choose the most common chords. If all the structures disa-

gree with one particular chord, it can be better to not cor-

rect it and to go back to chord probabilities to determine 

the right solution.  

9. CONCLUSIONS 

After processing simple chord detection using classic tech-

nique related to chromagrams, we presented some ways to 

improve the results by using the solution of other related 

automatic detection problems. We get better results for 

chord detection by considering not only each individual 

chord, but by looking at all chords as a given piece of mu-

sic. The algorithm optimization gives a lot more data that 

has to be merged in a statistical analysis. This way we can 

get a very general algorithm working for most situations 

including solo or multi instrumental songs. We evaluated 

the algorithm with the Beatles dataset, and get a CSR value 

of 73%, and a CMR of 89%. Even if the algorithm does 

not always find the correct chord symbols, the found chord 

will be coherent with the music. 
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