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ABSTRACT

This paper addresses feature extraction for automatic chord recogni-
tion systems. Most chord recognition systems use chroma features
as a front-end and some kind of classifier (HMM, SVM or template
matching). The vast majority of feature extraction approaches are
based on mapping frequency bins from spectrum or constant-Q spec-
trum to chroma bins. In this work a set of new chroma features that
are based on the time-frequency reassignment (TFR) technique is
investigated. The proposed feature set was evaluated on the com-
monly used Beatles dataset and proved to be efficient for the chord
recognition task, outperforming standard chroma.

Index Terms— chord recognition, chroma, time-frequency re-
assignment

1. INTRODUCTION

Automatic chord recognition has always been of a great interest to
Music Information Retrieval (MIR) community. Chord sequence
can serve as a robust mid-level representation for a variety of MIR
tasks. During the past few decades several approaches were devel-
oped. The majority of the proposed approaches can be decomposed
into the following structural parts: feature extraction, pre-filtering,
classification and post-filtering.

Chroma feature that was introduced by Fujishima [1] has proven
to be an effective tool for capturing harmonic structure. The most
common way of calculating chromagram is to transform the signal
from the time domain to the frequency domain with the help of short-
time Fourier transform (STFT) or constant-Q transform and subse-
quent energy mapping of spectral bins to chroma bins [2, 3].

When performing chroma extraction, the signal in a given anal-
ysis frame is assumed to be stationary and it is also assumed that
no note transitions occur inside it. Transients and noise may cause
energy assignment to some frequencies that do not occur in the sig-
nal. At the same time frame size should be long enough to provide
reasonable frequency resolution. A trade-off between frequency res-
olution and stationarity should be made for a particular task. The
most widely used frame sizes for capturing spectral content to form
chroma vectors are 192ms - 360ms. As a rule, to provide smoothed
feature sequence a high overlap ratio (50% – 90%) with subsequent
median filtering or averaging is applied. However, using such win-
dow lengths introduces inaccuracies with rapidly changing notes. On
the other hand, short window lengths does not provide reasonable
frequency resolution.

In this paper we introduce two alternative chroma features and
provide their comparative characteristics. The structure of the paper
is as follows: in section 2 the formulation of the time-frequency re-
assignment technique is introduced. Sections 3 and 4 describe the
chord recognition system and evaluation metrics. Experimental re-
sults and conclusions are then given in sections 5 and 6 respectively.

2. REASSIGNED SPECTRUM FOR CHROMAGRAM
CALCULATION

In the past few years a lot of different techniques for accurate and
relevant feature extraction in automatic chord recognition have been
proposed. In this section we examine the performance of the chro-
magram that is based on the reassigned spectrum.

Feature extraction process is aimed at transforming a given
waveform into a representation that captures desirable properties of
an analyzed signal. A great deal of acoustic features is derived from
some kind of time-frequency representations, which can be obtained
by mapping audio signal from one-dimensional time domain into
two-dimensional domain of time and frequency.

Spectrogram is one of the most widely spread time-frequency
representations that has been successfully used in a variety of appli-
cations, where spectral energy distribution changes over time. How-
ever, spectrogram possesses several drawbacks, such as unavoidabil-
ity of a compromise between time and frequency resolutions.

Time-frequency reassignment technique was initially proposed
by Kodera et al. [4]. The main idea behind TFR technique is to
remap spectral energy of each spectrogram cell into another cell that
is the closest to the true region of support of the analyzed signal.
As a result, ”blurred” spectral representation becomes ”sharper” that
allows one to derive spectral features from reassigned spectrogram
with much higher time and frequency resolution. Some papers have
already investigated the usage of reassigned spectrogram in different
tasks, such as sinusoidal synthesis [5], cover song identification [6]
and many others.

Now some mathematical foundations for the TFR technique are
provided. Let x(n) be a discrete signal in the time domain sam-
pled at a sampling frequency Fs. At a given time instant t, STFT
is performed on the signal weighted by a window function w(n) as
follows:

X(t, k) =
XM−1

n=0
w(n)x(n + t)e−2πjnk/M

, (1)

where k and M denote a bin number and the window size re-
spectively. Spectrogram is derived from (1) as shown in (2).

S(t, k) = |X(t, k)|2 (2)
The majority of chromagram extraction techniques uses this rep-

resentation for mapping spectral energies to chroma bins, ignoring
phase information as shown in (3).

n(fk) = 12log2

„
fk

fref

«
+69, n ∈�+

, (3)

where fref denotes the reference frequency of ”A4” tone, while
fk and n are the frequencies of Fourier transform and the semitone
bin scale index, respectively.

On the other hand, the result of STFTX(t, k) can be presented
in the following form:

X(t, k) = M(t, k)ejφ(t,k)
, (4)
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where M(t, k) is the magnitude, and φ(t, k) the spectral phase
of X(t, k). As was shown in [7], reassigned time-frequency coordi-
nates (t̂, ω̂) can be calculated as

t̂(t, ω) = −
∂φ(t, ω)

∂ω
(5)

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
(6)

Efficient computation of t̂(t, ω) and ω̂(t, ω) in the discrete-time
domain was proposed by Auger and Flandrin [8] and takes the fol-
lowing form:

t̂(t, ω) = t −�

j
XT w(t, ω) · X∗(t, ω)

|X(t, ω)|2

ff
(7)

ω̂(t, ω) = ω + �

j
XDw(t, ω) · X∗(t, ω)

|X(t, ω)|2

ff
(8)

where XDw is the STFT of the signal weighted by a frequency-
weighed window function, XT w is the STFT of the signal weighted
by a time-weighed window function ([7]). Reallocating spectral en-
ergy from spectrogram coordinate (t,w) to (t̂, ω̂) concludes the re-
assignment operation. As a result more precise estimates of spectral
energy distribution are obtained. However, reassigned spectrogram
can be noisy. A random energy can be located in points where there
are no obvious harmonic or impulsive components. The principle
of the reassignment technique is to reallocate energy from the geo-
metrical center of the analysis window to the ”center of gravity” of
the spectral component this energy belongs to. Meanwhile, in some
spectral regions, where there are no dominant components, large en-
ergy reassignment both in time and frequency can be observed. In
order to obtain a better spectral representation and to refine the spec-
trogram keeping the energy of harmonic components and deempha-
sizing that of noisy and impulsive components, the following condi-
tion should be met ([9])

˛̨
˛̨∂φ2 (t, ω)

∂t∂ω
+ 1

˛̨
˛̨ < A (9)

where A is the tolerance factor, which defines the maximum de-
viation of the acceptable spectral component from a pure sinusoid.
The optimal value of A depends on a particular task and can be em-
pirically determined. Fullop and Fitz reported in [10] that 0.2 is often
a reasonable threshold for speech signals. Efficient computation of
∂φ2(t,ω)

∂t∂ω
is given in [7] and can be expressed as follows

∂φ2 (t, ω)

∂t∂ω
= �

j
XT Dw(t, ω)X∗(t, ω)

|X(t, ω)|2

ff

−�

j
XT w(t, ω)XDw(t, ω)

X2(t, ω)

ff (10)

whereXT Dw(t, ω) is the STFT of the signal weighted by time-
frequency-weighed window function ([7]).

Comparison of spectrogram, reassigned spectrogram and ”re-
fined” reassigned spectrogram for an excerpt from ”Girl”, the Bea-
tles is provided in Figure 1. All spectrograms are computed using
Hanning window of 192 ms with 90% overlapping.

3. CHORD RECOGNITION SYSTEM

3.1. Front-End processing

In the chord recognition system under study, before extracting fea-
tures the tuning procedure described in [11] is applied in order to find
the mis-tuning rate and set the reference frequency fref for the ”A4”

(a) Spectrogram

(b) Reassigned spectrogram

(c) Harmonic reassigned spectrogram with tolerance factor set to 0.4

Fig. 1: Time-Frequency representation of an excerpt from ”Girl”,
the Beatles. All spectrograms are computed using Hanning window
of 192 ms with 90% overlapping.

tone. The necessity of tuning appears when audio was recorded from
instruments that were not properly tuned in terms of semitone scale.

The feature extraction process starts with downsampling the sig-
nal to 11025 Hz and converting it to the frequency domain by a
STFT applying Hanning window of N samples with 90% overlap
ratio. Direct folding of spectral energy to chroma bins using for-
mula (3) produces standard chroma (STD) feature. Applying time-
frequency reassignment technique before chroma wrapping results
in a ”reassigned” chroma (RC). ”Harmonic reassigned” chroma fea-
ture (HRC) calculation is based on the reassigned spectrum when
fulfilling the condition introduced in (9). In the last stage semitone
bins are mapped to pitch classes, which results in the sequence of
12-dimensional chroma vectors:

b(n) = mod(n, 12) (11)
where b(n) and n denote semitone bin indices in wrapped and

unwrapped chroma respectively.

3.2. Statistical classifier

This section briefly introduces a statistical classifier used for evalu-
ations. In the following, usage of hidden Markov models is pretty
much similar to what was described in [11] and [12]. However, in
this paper we investigate the usage of multi-stream observation layer,
where two observation vector streams model lower (bass) and higher
harmonic content. Similar technique was used in [13] and [14].
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Fig. 2: Connection scheme of trained models for decoding.

In [14] a dynamic Bayesian network is configured to contain bass
and treble observable layers.

In a multi-stream HMM observation probability distribution
bj(ot) representing the probability to emit observation symbol ot

at time instant t is defined as follows:

bj(ot) =
SY

s=1

2
4

MjsX
m=1

cjsmN (ost; μjsm, Σjsm)

3
5

γs

, (12)

where Mjs denotes the number of mixture components in state
j for stream s, cjsm is the weight of the m-th component and
N (ost; μjsm, Σjsm) is a multivariate Gaussian with mean vector μ
and covariance matrix Σ. Continuous density models are here used
in which each observation probability distribution is represented by
a mixture of multivariate Gaussians. Each Gaussian component
N

“
ost; μjsm,

P
jsm

”
can be expressed as

N (o; μ, Σ) =
1p

(2π)n |Σ|
exp

„
−

1

2
(o − μ)′Σ−1(o − μ)

«

(13)
where n is the dimensionality of observation o. The term γs is

a stream weight. Varying this parameter allows one to emphasize or
deemphasize the contribution of a particular stream.

For each chord type a separate HMM is created. Each model
consists of 1 – 3 emitting hidden states. Observation probability dis-
tributions are learned from data in the training stage. Feature vector
components are assumed to be uncorrelated with one another, so the
covariance matrix has a diagonal form.

Trained HMMs are connected as shown in figure 2. Such param-
eter as insertion penalty is introduced, which influences the transi-
tion probability between chords. Varying insertion penalty allows for
obtaining labels with different degrees of fragmentation, as typically
done in speech recognition tasks. As was shown in [12], insertion
penalty (or self-transition probability in [15]) can have a significant
impact on the overall performance.

In the experimental part two different HMM configurations are
evaluated – baseline and multi-stream one. The former configuration
includes one observation stream, where emitted symbols are chroma
vectors. In the latter case an additional observation stream is added
with bass chroma vectors served as observed sequence.

Songs from the training set are segmented according to the
ground-truth labels so that each segment represents one chord. Chro-
magrams extracted from these segments are used for training, which
is based on the application of the Baum-Welch algorithm. The recog-
nition process is performed by running the Viterbi decoder.

4. EVALUATIONMETRICS

Three different estimates are used to evaluate the quality of a chroma
vector. The first two that are ratio (R) and cosine measure (CM) are
computed as proposed in [16]; the third one, which is recognition
rate (RR) is explained below.

Let c(n) be an unwrapped chroma vector extracted from a chord
sample that was generated from a set of notes s. The R estimate is the
ratio of the power in the expected semitone bins, over the total power.
The expected semitone bins include the bins of the fundamentals and
3 partials for every note from set s.

For CM estimate a chroma template y(n) is built so that its val-
ues are set to 1 in the chroma bins that correspond to the funda-
mentals and to 0.33 in the chroma bins that correspond to the first
3 partials. The CM estimate is then computed as CM = 〈y·c〉

‖y‖‖c‖
,

where 〈·〉 is the inner product and ‖·‖ is the L2 norm.
RR measure is obtained by running the chord recognition task.

RR is computed as the total duration of correctly classified chords
divided by the total duration of the test material.

5. EXPERIMENTAL RESULTS

5.1. Chroma quality evaluation

For the first set of evaluations we used the University of Iowa 1

database of individual note recordings. The samples of the con-
stituent notes for a given chord were mixed together, producing a
waveform of 2 seconds duration. For the RR measure half of the
generated material was used as training set, the other half was used
for the test purposes. Chroma features were extracted with 192 ms
window lengths, 0.9 overlap, Hanning windowing.

The evaluation results for three different chroma features are
given in Figure 3.
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Fig. 3: Chroma quality estimates

In all the cases HRC and RC significantly outperform STD fea-
ture. The ratio estimate values proved the ability of the HRC to
deemphasize noise and impulsive components, which frequently oc-
cur during the note onsets.

5.2. Chord recognition system evaluation

In order to show the advantages of the proposed feature set for the
chord recognition task, a 3-fold cross validation was accomplished
on the ubiquitous Beatles data set. All the songs were randomly
divided into 3 folds.

Figure 4 depicts recognition rates for different number of Gaus-
sians for STD, RC and HRC features. For each configuration the
best insertion penalty is assumed. The results obtained indicate the
optimal number of Gaussians for the given training/test set equal
to 2048, since higher values do not bring significant improvement
while increasing computational load drastically.

For the HRC feature an impact of tolerance factor A introduced
in (9) on the recognition rate was investigated. The corresponding
graph is shown in Figure 5. The optimal value of A for the chord

1http://theremin.music.uiowa.edu/MIS.html
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Fig. 4: Recognition rate as a function of the number of Gaussians

recognition task turned out to be 0.4 with the recognition rate of
78.28%, although small deviations on this parameter seem to have a
minor impact in terms of loss of performance.
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Fig. 5: Recognition rate for HRC as a function of the tolerance factor

The next set of experiments involved the technique of splitting
frequency range used for chroma calculation into 2 parts: chroma
and bass chroma. For computing bass-chroma, frequencies that cor-
respond to the MIDI range between 24 (32.7 Hz) and 54 (185 Hz)
notes are used. For chroma feature extraction frequency interval be-
tween 54 (185 Hz) and 96 (2093 Hz) MIDI notes is employed.

The summary on the recognition rates for different feature set
configurations is given in Table 1. The experimental results showed
an evident advantage of HRC and RC features over standard chroma.
Having an additional observation stream that models bass content
proved to be effective. The best system configuration based on the
HRC feature and 2-stream observation layer in HMM achieved the
highest result of 80.67%.

STD RC HRC(A=0.4)
nobass 71.93 76.89 78.28
bass 74.29 80.19 80.67

Table 1: Recognition rates (%) for different feature set configura-
tions

6. CONCLUSION

In this paper we investigated influence of different parameters on
the performance of chord recognition system. Different frond-end
configurations have been proposed. More sophisticated chromagram
that is based on the time-frequency reassigned spectrogram proved

to outperform the traditional one. Tolerance factor with the HRC
features has been addressed and an optimal choice has been indi-
viduated. As for the classification component, a multi-stream HMM
structure has been proposed, where the two observable layers repre-
sent harmonic content of the two frequency regions.
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