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ABSTRACT

In this submission we apply nonnegative matrix factoriza-
tion (NMF) to the task of multiple fundamental frequency
estimation and tracking. NMF is an unsupervised learn-
ing method which finds an additive model of data. Since
each time point in a musical piece is composed of a sum
of notes, NMF is a suitable analysis tool. We constrain the
standard NMF model to be piecewise smooth and aligned
in order to exploit the general structure of music.

1. INTRODUCTION TO NMF

Lee and Seung popularize the use of NMF by applying it to
facial recognition (among other applications) [4]. Smaragdis
and Brown [7] later introduced the idea of using NMF for
music transcription. Since then, there has been much work
in the area such as: realtime transcribing utilizing spar-
sity constraints [2], sparsity and temporal smoothness con-
straints [9, 10], harmonic constraints [8], a Bayesian ap-
proach to enforce harmonicity and smoothness constraints
[1]. The methodology in this submission is fully described
in [6].

In NMF we wish to factorize a data matrix Xy, into
the product of two smaller matrices By, and G,.x, such
that

X ~ BG 1)

where we measure the closeness of X and BG using some
error function. In this work we will consider the following
metric which we will refer to as divergence as defined in

(5]

D(X[|BG) =
Xij

where M;; refers to the element of M in the it" row and
4t column.

We obtain our X matrix by taking the magnitude of the
short-time Fourier transform (STFT) of our music sam-

ple. We can then use NMF to factorize the data into B
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and G matrices. The novelty of NMF is that the columns
of B generally correspond to the magnitude of the Fourier
transforms of each individual note in the piece (as well as a
noisy column), and the rows of G correspond to each note’s
activation. See Figure 1 for an illustration of the process.
The only parameter needed to be set in the standard model
is r, the number of notes in the musical piece.

We impose sparsity and piecewise smoothness constraints
on GG by adding penalties to the error function.

Sparsity:
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Piecewise smoothness:
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Piecewise smoothness with aligned notes:
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Similar piece-wise smoothness constraints have been
used for the task of hyper spectral unmixing [3]. To obtain
a factorization we use gradient descent in order to mini-
mize the error function. We begin by randomly initializ-
ing our B and G matrices. We derive update rules based
on our error function for each matrix separately. Once we
have update rules for both B and G, we iteratively update
each until convergence. Note that it is possible to train the
model ahead of time by precomputing the B matrix using
real or synthetic music samples. For details of the update
rules see [6].

2. METHODOLOGY

Our submission is for the task of multiple fundamental fre-
quency estimation and tracking. Our methods for each
subtask (1. frame level evaluation and 2. note tracking)
are very similar and differ only in preprocessing and post-
processing. In either subtask we start by finding the magni-
tude of the STFT of the music signal. For subtask 1 we use
20 ms triangular windows overlapping by 10 ms. For sub-
task 2 we use 100 ms triangular windows overlapping by
50 ms. Frequency bins are evenly spaced up to a maximum
of 5 kHz.
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Figure 1. Top: The short-time Fourier transform of an audio signal is taken to obtain the matrix X . Bottom: NMF produces

note matrix B (left) and note activation matrix G (right).

We make use of a precomputed B matrix learned from
synthetically generated piano music, and hence we must
only calculate the G (transcription) matrix for a given mu-
sic sample. The B matrix has 88 columns corresponding
to the possible keys on a piano. Once we have found our
G we threshold its values to obtain a binary matrix where
values of one indicate a note is activated.

Once we have our binary transcription matrix G we can
easily output either frame level activations in the case of
subtask 1, or note onset and offsets for subtask 2. An in-
depth explanation of our methodology can be found in [6].

3. REFERENCES

[1] N. Bertin, R. Badeau, and E. Vincent. Enforcing har-
monicity and smoothness in bayesian non-negative ma-
trix factorization applied to polyphonic music tran-
scription. Audio, Speech, and Language Processing,
IEEE Transactions on, 18(3):538-549, March 2010.

[2] Arshia Cont. Realtime multiple pitch observation using
sparse non-negative constraints. In International Con-
ference on Music Information Retrieval, 2006.

[3] Sen Jia and Yuntao Qian. Constrained nonnegative
matrix factorization for hyperspectral unmixing. Geo-
science and Remote Sensing, IEEE Transactions on,
47(1):161-173, Jan 2009.

[4] Daniel D. Lee and H. Sebastian Seung. Learning the

(5]

(7]

(8]

(10]

parts of objects by non-negative matrix factorization.
Nature, 401(6755):788-791, 1999.

Daniel D. Lee and H. Sebastian Seung. Algorithms for
non-negative matrix factorization. In NIPS, pages 556—
562. MIT Press, 2000.

Daniel Recoskie. Constrained nonnegative matrix fac-
torization with applications to music transcription.
Master’s thesis, University of Waterloo, Canada, 2014.
http://hdl.handle.net/10012/8639.

P. Smaragdis and J.C. Brown. Non-negative matrix fac-
torization for polyphonic music transcription. In Appli-
cations of Signal Processing to Audio and Acoustics,
2003 IEEE Workshop on., pages 177-180, Oct 2003.

E. Vincent, N. Bertin, and R. Badeau. Adaptive har-
monic spectral decomposition for multiple pitch es-
timation. Audio, Speech, and Language Processing,
IEEE Transactions on, 18(3):528-537, March 2010.

T. Virtanen. Sound source separation using sparse cod-
ing with temporal continuity objective. In Proc. Int.
Comput. Music Conf, pages 231-234, 2003.

T. Virtanen. Monaural sound source separation by non-
negative matrix factorization with temporal continuity
and sparseness criteria. Audio, Speech, and Language
Processing, IEEE Transactions on, 15(3):1066-1074,
March 2007.



