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ABSTRACT 

In this submission, the music recordings are first trans-

formed into auditory spectrograms. After extracting the 

spectral-temporal modulation contents of the time-

frequency (T-F) units through a two-stage auditory model, 

we define modulation features pertaining to three catego-

ries in music audio signals: vocal, harmonic, and percus-

sive. The T-F units are then clustered into three categories 

in a two-stage clustering process and the singing voice is 

synthesized from T-F units in the vocal category via time-

frequency masking. This submission is an extended work 

from [1]. 

1. INTRODUCTION 

Music instruments produce signals with various kinds of 

fluctuations such that they can be briefly categorized into 

two groups, percussive and harmonic. Signals produced 

by percussive instruments are more consistent along the 

spectral axis and by harmonic instruments are more con-

sistent along the temporal axis with little or no fluctua-

tions. These two categories occupy a large proportion of a 

spectrogram with mainly vertical and horizontal lines. To 

extend this sense into a more general form, the fluctua-

tions can be viewed as a sum of sinusoid modulations 

along the spectral axis and the temporal axis. If a signal 

has nearly zero modulation along one of the two axes, its 

energy is smoothly distributed along that axis. Converse-

ly, if a signal has a high frequency of modulation along 

one axis, then its energy becomes scattered along that ax-

is. Therefore, if one can decipher the modulation status of 

a signal, one may be able to identify the instrument type 

of the signal.  

Since modulations are important for music signal cat-

egorization, this modulation-decomposition auditory 

model is used as a pre-processing stage for singing voice 

separation in this paper. Our proposed unsupervised algo-

rithm adapts this two-stage auditory model, which de-

codes the spectro-temporal modulations of a T-F unit, to 

extract modulation based features and performs two-stage 

singing voice separation under the CASA framework. A 

brief review of the auditory model is presented in Section 

2. Section 3 describes the proposed method. Section 4 

shows evaluation and results. 

2. SPECTRO-TEMPORAL AUDITORY MODEL 

A neuro-physiological auditory model is used to extract 

the modulation features. The model consists of an early 

cochlear (ear) module and a central auditory cortex (A1) 

module. 

2.1 Cochlear Module 

The input sound goes through 128 overlapping asymmet-

ric constant-Q band-pass filters (       ) whose center 

frequencies are uniformly distributed over 5.3 octaves 

with the 24 filters/octave frequency resolution. These 

constant-Q filters mimic the frequency selectivity of the 

cochlea. Outputs of these filters are then transformed 

through a non-linear compression stage, a lateral inhibito-

ry network (LIN), and a half-wave rectifier cascaded with 

a low-pass filter. The non-linear compression stage mod-

els the saturation caused by inner hair cells, the LIN 

models the spectral masking effect, and the following 

stage serves as an envelope extractor to model the tem-

poral dynamic reduction along the auditory pathway to 

the midbrain. Detailed descriptions of the cochlear mod-

ule can be found in [2].  

The output of the module is the auditory spectrogram, 

which represents the neuron activities along time and log-

frequency axis. In this work, we bypass the                                                                                            

non-linear compression stage by assuming input sounds 

are properly normalized without triggering the high-

volume saturation effect of the inner hair cells. 

2.2 Cortical Module 

The second module simulates the neural responses of the 

auditory cortex (A1). The auditory spectrogram is ana-

lyzed by cortical neurons which are modeled by two-

dimensional filters tuned to different spectro-temporal 

modulations. The rate parameter (in Hz) characterizes 

the velocity of local spectro-temporal envelope variation 

along the temporal axis. The scale parameter (in cy-

cle/octave) characterizes the density of the local spectro-

temporal envelope variation along the log-frequency axis. 

Furthermore, the cortical neurons are found sensitive to 

the direction of the spectro-temporal envelope. It is char-

acterized by the sign of the rate para- meter in this model, 

with negative for the upward direction and positive for 

the downward direction. Detailed description of the cor-

tical module is available in [3]. 

3. PROPOSED METHOD 

3.1 Feature Extraction 

Interpreting the instrument characteristics from the rate-

scale perspective, several general properties can be drawn. 

Harmonic components can be usually regarded as having 

low rate and high scale modulations.     



  

 

                                             

 

Figure 1. Block diagram of the submitted algorithm. 

A schematic diagram of the proposed algorithm is shown 

in Figure 1.  

It means that they have relatively slow energy change 

along time and rapid energy change along the log-

frequency axis due to the harmonic structures. In contrast, 

percussive components typically show quick energy 

change along time and energy spreading along the whole 

log-frequency axis, such that they possess high rate and 

low scale modulations. Vocal components are often rec-

ognized as a mix version of the harmonic and percussive 

components with characteristics sometimes considered 

more similar to harmonics.  

Given an auditory spectrogram transformed from an 

input music signal, the rate-scale plots of the T-F units 

are generated. As a pre-process, in order to prevent ex-

tracting trivial data from nearly inaudible T-F units of the 

auditory spectrogram, we leave out the T-F units that 

have energy less than 1% of the maximum energy of the 

whole auditory spectrogram. With the rest of the T-F 

units, we obtain the rate-scale plot of each unit and pro-

ceed to the feature extraction stage.  

For each rate-scale plot, the total energies of the nega-

tive and positive rate side are compared. The side with 

greater energy is determined as the dominant plot. From 

the dominant plot, we extract features from the feature 

sets shown in Tables 3.2 ~ 3.6.  

3.2 Unsupervised Clustering 

After feature extraction in each stage, unsupervised clus-

tering is followed. The spectrogram is divided into three 

parts consisting of channel 1 to channel 60, channel 46 to 

channel 75, and channel 61 to channel 128, respectively, 

with overlaps of 15 channels. 

The clustering step is performed using the EM 

algorithm to group data into two unlabelled clusters. The 

EM algorithm assigns a probability set to each T-F unit 

showing its likelihood of belonging to each cluster. Each 

of the three sub-spectrograms is clustered into two groups. 

 
Table 3.2~3.6. Feature sets 1~5. 

Total of six groups are generated and merged back into 

two whole spectrograms by comparing the correlations of 

the overlapped channels between different groups. With 

no prior information about the labels of the two whole 

spectrograms, criterions at each stage are used to select 

the vocal spectrogram. The vocal spectrogram is then 

synthesized to an estimated signal using the auditory 

model toolbox [7].  

4. EVALUATION RESULTS 

 

Figure 5. GNSDR comparison at voice-to-music ratio of 

-5, 0, and 5 dB with existing methods.  

The MIR-1K [4] is used as the evaluation dataset. The 

SDR ratios [5] are computed by the BSS Eval toolbox 

v3.0 [6]. We compute the GNSDR to compare with other 

proposed algorithms listed in [1].  

From Figure 5, we can observe that this submission 

(proposed2) has the highest performance in 0 and -5 dB 

SNR conditions. In the 5 dB SNR condition, the perfor-

mance of proposed2 is comparable to the performance of 

REPET.  
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