MIREX 2014 SYMBOLIC MELODIC SIMILARITY:
EXTRACTING SIMILAR MELODIES BASED ON
TOP-N COLOSSAL PATTERN MINING

Yoshiaki OKUBO and Makoto HARAGUCHI
Graduate School of Information Science and Technology
Hokkaido University
N-14 W-9, Sapporo 060-0814, JAPAN
E-mail: {yoshiaki, mh} @ist.hokudai.ac.jp

ABSTRACT

In this report, we outline our system for retrieving simi-
lar melodies for a given query melody. We formalize our
retrieval problem based on frequent colossal pattern min-
ing. In our framework, sequences of pitch-differences with
length ¢ extracted from a melody collection are regarded
as primitive items. Then a frequent pattern (itemset) corre-
sponds to a set of those sequences which are commonly ap-
peared in at least a pre-defined minimum number of melodies
in the collection. Given a query melody, we try to find fre-
quent patterns appeared in both the query and melodies in
the collection. Since there are in general a lot of those fre-
quent patterns, we especially try to extract colossal ones
with Top-N cardinality each of which provides us a set of
candidate melodies similar to the query with higher simi-
larity.

1. INTRODUCTION

For the task of Symbolic Melodic Similarity (SMS) in MIREX

2014, we propose a retrieval system based on frequent pat-
tern mining [1]. In our framework, each melody in a given
melody collection is represented as a set of primitive items,
where an item is a sequence of pitch-differences with length
¢ extracted from melodies in the collection. Given a query
melody g, the set of pitch-difference sequences (items))
appeared in ¢ is also extracted, and then we try to find an
itemset X C () which appears in ¢ and at least 10 melodies
in the collection. Since ¢ and those 10 (or more) melodies
commonly have the itemset X, they are reasonably consid-
ered to be similar each other. We, therefore, regard those
melodies as candidates to retrieve in our SMS search for
the query.

There are in general many itemsets filling the above
requirement. In order to obtain candidate melodies with
higher similarity to g, we try to extract such itemsets with
Top-N cardinality according to our previous framework of
mining Top-N colossal patterns [4].

This document is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

(© 2010 The Authors.

Candidate melodies provided by the extracted patterns
with Top-V cardinality are assigned a ranking in descend-
ing order of similarity to ¢, where we evaluate similarity
regarding shared items with larger pitch-differences as im-
portant. Finally, the top-10 ranked melodies are presented
to users as the final result of our SMS search for q.

2. CONVERTING MELODY COLLECTION INTO
TRANSACTION DATABASE

2.1 Melody as Sequence of Pitch Differences

It is supposed that we are given a collection, M, of mono-
phonic melodies in Standard MIDI Format. We can extract
a sequence of notes from each melody in the collection by
picking up only note-on events. It is noted that we do not
care duration of notes in melodies. Moreover, we regard
any consecutive notes with the same pitch as a single note
with the pitch. We, therefore, can obtain a sequence of note
numbers from each melody in which any adjacent numbers
are different.

In order to capture principal (up-and-down) movement
of notes in melodies, we ignore any difference of keys in
melodies. That is, each melody z € M is regarded as a
sequence of pitch-differences, denoted by Z, between any
adjacent notes in the melody.

2.2 Extracting /-Consecutive Pitch-Differences as
Primitive Item

For each melody x; € M, let us assume we have its corre-
sponding sequence of pitch-differences #; = (a1, a2, . .
Regarding such a sequence as a string, we extract the set
of substrings with length ¢ from «;, that is, we can obtain
at most k; — ¢ + 1 substrings. In our framework, such a
substring is regarded as a primitive element called an item.
Technically speaking, each item f can be represented as an
(-tuple f = (di,...,ds), where d;; is a non-zero integer.
Thus, each melody is represented as the set of those items
extracted from the melody.

2.3 Melody Collection as Transaction Database

Based on the above, we can easily convert the given melody
collection M into a transaction database T'D B defined

.,aiki>.

as
TDBnm = {(ID(z),trans(x)) | = € M},

where I D(x) is an identification of the melody = and trans(zx)

the set of items extracted from .

3. FINDING SIMILAR MELODIES BASED ON
TOP-N COLOSSAL PATTERN MINING

Given a transaction database and a minimum frequency
threshold o, a problem of frequent pattern mining [1] is
to enumerate every set of items, called a frequent pattern,
which appears as a subset in at least o transactions in the
database. It is noted here that a frequent pattern can be
viewed as one of the evidence that the o (or more) trans-
actions containing the pattern are similar each other. For
a query melody ¢, therefore, if we can find some frequent
pattern X in T'D By, which also appears in g, each trans-
action (melody) with X in T'DB 4 can be considered to
be similar to g. Based on this simple idea, we formalize
our task of retrieving similar melodies in terms of frequent
pattern mining.

In general, there are many frequent patterns filling the
above requirement. Since we have to retrieve melodies
with higher similarity to ¢, it is reasonable to extract a
frequent pattern X with as large cardinality as possible.
Such a pattern with large cardinality is called a colossal
pattern [2, 4].

In our previous work, we have proposed an algorithm
for efficiently finding frequent patterns with Top-N cardi-
nality [4]. Therefore, our SMS system can be designed
based on our previous algorithm.

In the algorithm, the notion of pattern-graph [3] plays a
very important role for efficient mining of target patterns.
The pattern-graph can be constructed before pattern min-
ing process. Although the construction is a bit time con-
suming task, we need to perform it just once. We, there-
fore, can construct it in our preprocess.

For the task of SMS, we can efficiently extract frequent
patterns with Top-/NV cardinality which also appear in a
query melody. Technically speaking, given a query melody
q, we first identify the set of items, (), which can be ex-

tracted from q. Then our original transaction database T'D By

is projected on (). For the projected database denoted by
TDBm[Q], we try to find frequent patterns with Top-N
cardinality. It is emphasized here that only a very small

part of the items in the original database appear in T'D B [Q)]-

It is, therefore, strongly expected that those Top-/V colos-
sal patterns can be enumerated efficiently even if a large
number of items are in the original database.

Let X = {Xy,...,X,,} be the set of colossal patterns
with Top-N cardinality found based on the above proce-
dure, where X; C @ forany i € {1,...,m}. For each X,
we can uniquely identify the set of melodies in M with X;
which is formally defined as

M(X;) ={z |z e MAX; Ctrans(z)}

Thus, each colossal pattern X; can provide a certain view-
point of similarity. The melodies in M (X;) are consid-
ered similar in the sense that all of them commonly have

X;. That is, each extracted pattern brings us a set of can-
didate melodies which are similar to the query from the
viewpoint. As the result, we can obtain a set of candidate
melodies C expected to be similar to the query, defined as

c=J MX).

Xex

4. RANKING CANDIDATE MELODIES

After having a set of candidate melodies C for a query
melody ¢, the melodies are assigned a ranking based on
similarity to gq. Although there exist various definitions
of similarity, we take a quite simple definition as the first
stage of our investigation. More concretely speaking, let
be the set of items extracted from ¢ and = a melody in M.
Then we define a similarity between ¢ and z, denoted by
sim(q,), as the average weight of common items:

sim(q,) weight(f),

1
- |Q Ntrans(x)| Z

feQntrans(x)

where weight(-) is a weight function defined on the items
in TDBm[Q).

Let us assume that each item f is represented as an /-
tuple f = (di,...,dp). In our current framework, we re-
gard items with larger pitch differences as more important
because those items seem to be characteristic in melodies.
Then we prefer melodies which share such characteristic
items with the query melody. Based on this intuitive idea,
we simply define our weight for an item f = (dy,...,dy)

as
14

wight(f) = Z |ds].

=1

In order to assign our ranking to melodies in the set of
candidates C, for each melody = € C, we calculate the
similarity between ¢ and z, sim(q,x), according to the
above definitions. Then the melodies in C are sorted in
descending order of their similarity values. Finally, the first
10 melodies are presented to users as the final output of our
SMS system.

It should be noted here that two identical melodies do
not necessarily have high similarity. From the definition
above, it is observed that common items with small weights
decreases their average weight. Hence, for two melodies x
and y, if most of their common items have higher weight,
we often have sim(z,y) > sim(z,z) (or sim(y,y)). In
the definition of our similarity, thus, common items with
smaller weight could work negatively.

5. PARAMETER SETTING

Our system for SMS search has three parameters, ¢, o and
N.

The parameter ¢ is for the length of pitch-difference se-
quences to be extracted as items. If it is too small (short),
say 3 or less, it would be difficult to expect those items to
present characteristics of individual melodies. Conversely,

if it is too large (long), it would not be probable that sev-
eral melodies commonly have some of them. Therefore,
our current system (tentatively) takes the setting of £ = 5.

As has been mentioned previously, the parameter o is
for the minimum number of transactions in which our tar-
get patterns must appear. Practically speaking, the param-
eter directly affects the cardinality of target patterns to be
extracted. As o becomes smaller, cardinality of extracted
patterns tends to be larger. Patterns with larger cardinal-
ity is desirable in our SMS search because such a pattern
can work as a sufficient basis of high similarity. On the
other hand, we have to find at least 10 melodies similar to
a given query melody. Therefore, it is reasonable to set the
parameter o to 10 so that we can output at least 10 similar
melodies as the minimum requirement of the SMS task.

In order to take various viewpoints of similarity into ac-
count, we assume N = 3 for Top-/N in our current param-
eter setting. In our preliminary experimentation, we have
empirically found that the setting of N = 2 or less seems
too restrictive because we often obtain a very small num-
ber of patterns with the setting. Conversely, if N becomes
larger, patterns with the N-th cardinality give us lower sim-
ilarity and the number of extracted patterns tends to be too
large.

6. CONCLUDING REMARKS

We briefly discussed in this report our current system for
the task of SMS in MIREX 2014. Since it is at the first
stage of our investigation, we have to examine many other
ideas. Particularly, design of items would be the most in-
fluential in developing an excellent SMS system. In the
context of data mining and machine learning, it is well-
known as a kind of “Feature Selection Problem”. For ex-
ample, we would have to pay our attention to the following
points:

e Is ignoring duration of notes reasonable or not?

e What is an adequate length of pitch-difference se-
quences we have to extract as an item?

Both questions are deeply concerned with a fundamental
theme:

Adequate abstraction level (granularity) for rep-
resentation of symbolic melodies.

Definitions of similarities and weight functions would
also affect the final result of SMS search. Since our current
definitions are quite simple, it would be better to take other
useful factors into account. Incorporating a TFIDF-based
weighting could be a promising approach.

7. REFERENCES

[1] J. Han, H. Cheng, D. Xin and X. Yan, Frequent Pat-
tern Mining - Current Status and Future Directions,
Data Mining and Knowledge Discovery, 15(1), 55 —
86, 2007.

[2] F. Zhu, X. Yan, J. Han, P. S. Yu and H. Cheng, Min-
ing Colossal Frequent Patterns by Core Pattern Fusion,
Proc. of the 23rd IEEE Int’1 Conf. on Data Engineering
- ICDE’07, 706 — 715, 2007.

[3] Y. Xie and P. S. Yu, Max-Clique: A Top-Down Graph-
Based Approach to Frequent Pattern Mining, Proc. of
the 2010 IEEE Int’l Conf. on Data Mining - ICDM’ 10,
1139 — 1144, 2010.

[4] Y. Okubo and M. Haraguchi: Finding Top-N Colossal
Patterns Based on Clique Search with Dynamic Update
of Graph, Proc. of The 10th Int’l Conf. on Formal Con-
cept Analysis - ICFCA’12, LNAI-7278, pp. 244 — 259,
2012.

