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ABSTRACT whilst offering a compact representation, suitable for an

) o N ~ efficient system (250 frequency bins compared to the 545
In this submission for MIREX 2015 we utilize an effi- |o4-frequency bins of the VQT). This is however at the cost
cient latent variable model for multiple-FO estimation and ¢ losing the shift-invariance abilities of [4], since thRE

note tracking, which uses an ERB-scale time-frequency g¢gie is non-linear with respect to log-frequency.
representation as input. The transcription model is based

on probabilistic latent component analysis and uses pre—nent analysis (PLCA) and supports the usemind state

extracted spectral templates correspondingptmd states . .
b P P . .. spectral templates, which represent the temporal evolutio
for several instruments. Three system variants are submit-

) . : : of each note (e.g. attack, sustain, decay). It decomposes
ted: one trained on orchestral instruments for multiple-FO . L :

L . . the input representation into a series of spectral tenmgplate
estimation, one trained on orchestral instruments for note

. X . . per sound state, pitch, and instrument, as well as proba-
tracking, and a final one trained on piano templates for .. ~" " =~ X .
. . bility distributions for sound state, pitch, and instrurhen
piano-only note tracking.

activations. As explained in [1], a sound state represents
different segments in the temporal evolution of a note; e.g.
1. INTRODUCTION for a piano, different sound states can correspond to the

Automatic music transcription is the process of converting attack, sustain, and decay.

an acoustic musical signal into some form of music nota-

tion [8]. The problem is considered to be one of the most

important ones in the fields of music mfprmatpn rgtnevgl 2 TRANSCRIPTION SYSTEM
(MIR) and music signal processing, with applications in

compl_Jtat_ionaI musi_cology, interactive music system_s, and, 1 pitch template extraction

organisation of music collections. However, the creatibn o

an automated system able to transcribe multiple-instrtimen pye_extracted sound state spectral templates are extracte
polyphonic music without any constraints on instrument for yarious instruments, namely alto saxophone, bass, bas-
identities or on the level of polyphony continues to be an soon, cello, clarinet, flute, guitar, horn, oboe, piano, and
open problem in the field [2]. _ _ violin. For extracting the templates, we used isolated note
In this MIREX submission for the Multiple-FO Estima- samples from the RWC database [7] for all instruments
tion and Note Tracking tasks, we utilise the polyphonic apart from piano, where we used note samples from the

music transcription system that was proposed in [4]. In mAPS database [6]. The complete note range of the in-
contrast to the aforementioned model, which utilised as giyyments (given available data) is used.

input time-frequency representation the variable-Q trans
form (VQT) [9], in this submission we use an Equiva-

lent Rectangular Bandwidth (ERB) scale time-frequency
representation, which was also used for multi-pitch de-
tection in [12]. Preliminary experiments showed that the
ERB representation offers increased temporal resolution
(which is particularly useful for the note tracking task),

The core model is based on probabilistic latent compo-

As a time-frequency representation, we use the auditory-
motivated Equivalent Rectangular Bandwidth (ERB) scale
time-frequency representation that was used for multikpit
detection in[12]. In short, the input signal is passed tijrou
a set of 250 filters, with frequencies linearly spaced be-
tween 5Hz and 10.8kHz on the ERB scale. Each subband
is partitioned into disjoint 23ms time frames, and the rms
E. Benetos is supported by a Royal Academy of Engineering Re- magnitudeV/, , is computed for each frame (is the fre-

search Fellowship (grant no. RF/128). quency indext is the time index). This leads to a com-
pact representation of 250 frequency bins per frame (com-
This document is licensed under the Creative Commons pared to the 545 bins of the VQT representation, or even
Attribution-Noncommercial-Share Alike 3.0 License. higher numbers for STFT representations). For extracting
http://creativecommons.org/licenses/by-nc-sa/3.0/ the templates, we used the standard PLCA model [10] with

(© 2015 The Authors. one component.



2.2 Transcription model

250

ex)

The system takes as input the ERB representation of
audio recording (., ;) and approximates it as a bivariate'c 2
probability distributionP(w,t). In the model,P(w,t) is
decomposed into a series of spectral templates per sou&cuor .
state, pitch, and instrument, as well as probability distri  $ ;
tions for sound state, pitch, and instrument. As explaineg 100
in [1], a sound state represents different segments in tie

temporal evolution of a note; e.g. for a piano, dif'feren%e 50

atio

sound states can correspond to the attack, sustain, and

cay. ‘ ‘ — ‘ ‘ ‘ ‘ ‘
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The model is formulated as: time (sec)
Figure 1. The ERB T/F representation for the first 20sec
P(w,t) = P(t) Y P(wlq,p, s)Pi(slp)P:(p) Pi(qlp) of the MIREX multiFO development recording.
q,pP,s
1)
where ¢ denotes the sound state,denotes pitch, and
denotes instrument sourcé’(t) = V., which is a 1or 1
known quantity.P(w|q, p, s) is a 4-dimensional tensor that - - S R

represents the pre-extracted spectral templates per SOUN(sop <5777 R T E
stateg, pitch p and instruments. P;(s|p) is the instru- 2 .|

o —r L e - -

ment source contribution per pitch over time,(¢|p) is = | T, e T e, e =T

the time-varying sound state activation per pitch, and fig |~ 7 == —— - '

nally P;(p) is the pitch activation, which is essentially the = ™| e ' AT

resulting multi-pitch detection output. S EETEPEEL FEFEEEEEE § 7
The unknown model parametet3 (s|p), P;(p), P:(q|p)) 30t 1

can be iteratively estimated using the expectation-magation . L : T T T

(EM) algorithm [5]. For theExpectation step, the follow- time (sec)

ing posterior is computed: Figure 2. The pitch activationP(w, t) for the first 20sec

of the MIREX multiFO development recording.
Pt(Qapa S|(.d) =

P(wlg, p, s)Pi(slp) P (p) Pi(qlp)

2 seen in Fig. 1; the corresponding pitch activati(p, t)

> qps P(@la, p, 5)P(s|p)Pe(p) Pi(alp) can be seen in Fig. 2. The flute trills in the upper register
For theMaximization step, unknown model parameters &€ particularly evident. _ _
are updated using the posterior from (2): The system is quite efficient computationally, being able

to produce a transcription in about 1.5 real-time in a

> wq L@ p slw) Vit Sony VAIO S15 laptop (e.g. for a 30sec recording it re-

Py(slp) = > . Pi(q,p, s|w)Vi s ) quires 45sec). The code for the transcription model (using
o the VQT representation as input) is available onfine
Z Pt(Q7p78|w)th
P,(p) = =21 . 4 i
+(p) Zp,w,s,q Py(q,p, s|w)Vio s (4) 2.3 System variants
S P p, s|w) Vi s Three variants of the system are utilized for the MIREX
Pi(q|p) = : (5) 2015 evaluation; one trained on the complete instruments

ZW,S Pi(q,p, slw) Voot set listed in subsection 2.1 for the multiple-FO estimation
Egs. (2)-(5) are iterated until convergence; 30 itera- task (BW1), one trained on the complete instrument set

tions are set. No update rule for the sound state templategor the note tracking task (BW2), and a system trained on

P(wlg,p, s) is included, since they are considered fixed piano templates only for the piano-only note tracking task

in the model. As in [1], we also incorporated sparsity (BW3).

constraints onP;(p) and P;(s|p) in order to control the

polyphony level and the instrument contribution in the re- 3. RESULTS

sulting transcription. The resulting multi-pitch detecti

output is given byP(p, t) = P(t)P,(p). After performing This year, evaluation was performed on two datasets: the

5-sample median filtering for note smoothing, thresholding MIREX dataset (used in previous years) and the Su dataset

is performed onP(p, t) followed by minimum note dura-  [11].
tion pruning set to 20ms in order to convét(p, ¢) into a On the MIREX dataset, the BW1 system ranked 1st for
binary piano-roll representation. the Multiple-FO Estimation task (Task 1); the BW2 system

An example, the ERB representation for the MIREX ™11, 15/ code. soundsof t war e. ac. uk/ pr oj ect s/
multiFO development woodwind quintet recording can be ant _pl ca_5d




ranked 1st for the (multi-instrument) Note Tracking task[10] P. Smaragdis, B. Raj, and Ma. Shashanka. A prob-

(Task 2); and the BW3 system ranked 1st for the Piano-
only Note Tracking task (Task 3). Compared to last year's
submission by the same team of Benetos & Weyde [3], the
current system had an improvement of +1.7% for Task 2
and an improvement of +6.6% for Task 3 (both in terms of11l

onset-based F-measure).

On the Su dataset [11], our submission ranked 2nd for

the Multiple-FO Estimation task (Task 1); it ranked 1st for

the (multi-instrument) Note Tracking task (Task 2); and
ranked 1st for the Piano-only Note Tracking task (Task 3)[12]
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