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ABSTRACT

In this submission for MIREX 2015 we utilize an effi-
cient latent variable model for multiple-F0 estimation and
note tracking, which uses an ERB-scale time-frequency
representation as input. The transcription model is based
on probabilistic latent component analysis and uses pre-
extracted spectral templates corresponding tosound states
for several instruments. Three system variants are submit-
ted: one trained on orchestral instruments for multiple-F0
estimation, one trained on orchestral instruments for note
tracking, and a final one trained on piano templates for
piano-only note tracking.

1. INTRODUCTION

Automatic music transcription is the process of converting
an acoustic musical signal into some form of music nota-
tion [8]. The problem is considered to be one of the most
important ones in the fields of music information retrieval
(MIR) and music signal processing, with applications in
computational musicology, interactive music systems, and
organisation of music collections. However, the creation of
an automated system able to transcribe multiple-instrument
polyphonic music without any constraints on instrument
identities or on the level of polyphony continues to be an
open problem in the field [2].

In this MIREX submission for the Multiple-F0 Estima-
tion and Note Tracking tasks, we utilise the polyphonic
music transcription system that was proposed in [4]. In
contrast to the aforementioned model, which utilised as
input time-frequency representation the variable-Q trans-
form (VQT) [9], in this submission we use an Equiva-
lent Rectangular Bandwidth (ERB) scale time-frequency
representation, which was also used for multi-pitch de-
tection in [12]. Preliminary experiments showed that the
ERB representation offers increased temporal resolution
(which is particularly useful for the note tracking task),
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whilst offering a compact representation, suitable for an
efficient system (250 frequency bins compared to the 545
log-frequency bins of the VQT). This is however at the cost
of losing the shift-invariance abilities of [4], since the ERB
scale is non-linear with respect to log-frequency.

The core model is based on probabilistic latent compo-
nent analysis (PLCA) and supports the use ofsound state
spectral templates, which represent the temporal evolution
of each note (e.g. attack, sustain, decay). It decomposes
the input representation into a series of spectral templates
per sound state, pitch, and instrument, as well as proba-
bility distributions for sound state, pitch, and instrument
activations. As explained in [1], a sound state represents
different segments in the temporal evolution of a note; e.g.
for a piano, different sound states can correspond to the
attack, sustain, and decay.

2. TRANSCRIPTION SYSTEM

2.1 Pitch template extraction

Pre-extracted sound state spectral templates are extracted
for various instruments, namely alto saxophone, bass, bas-
soon, cello, clarinet, flute, guitar, horn, oboe, piano, and
violin. For extracting the templates, we used isolated note
samples from the RWC database [7] for all instruments
apart from piano, where we used note samples from the
MAPS database [6]. The complete note range of the in-
struments (given available data) is used.

As a time-frequency representation, we use the auditory-
motivated Equivalent Rectangular Bandwidth (ERB) scale
time-frequency representation that was used for multi-pitch
detection in [12]. In short, the input signal is passed through
a set of 250 filters, with frequencies linearly spaced be-
tween 5Hz and 10.8kHz on the ERB scale. Each subband
is partitioned into disjoint 23ms time frames, and the rms
magnitudeVω,t is computed for each frame (ω is the fre-
quency index,t is the time index). This leads to a com-
pact representation of 250 frequency bins per frame (com-
pared to the 545 bins of the VQT representation, or even
higher numbers for STFT representations). For extracting
the templates, we used the standard PLCA model [10] with
one component.



2.2 Transcription model

The system takes as input the ERB representation of an
audio recording (Vω,t) and approximates it as a bivariate
probability distributionP (ω, t). In the model,P (ω, t) is
decomposed into a series of spectral templates per sound
state, pitch, and instrument, as well as probability distribu-
tions for sound state, pitch, and instrument. As explained
in [1], a sound state represents different segments in the
temporal evolution of a note; e.g. for a piano, different
sound states can correspond to the attack, sustain, and de-
cay.

The model is formulated as:

P (ω, t) = P (t)
∑

q,p,s

P (ω|q, p, s)Pt(s|p)Pt(p)Pt(q|p)

(1)
whereq denotes the sound state,p denotes pitch, ands
denotes instrument source.P (t) =

∑
ω
Vω,t, which is a

known quantity.P (ω|q, p, s) is a 4-dimensional tensor that
represents the pre-extracted spectral templates per sound
stateq, pitch p and instruments. Pt(s|p) is the instru-
ment source contribution per pitch over time,Pt(q|p) is
the time-varying sound state activation per pitch, and fi-
nally Pt(p) is the pitch activation, which is essentially the
resulting multi-pitch detection output.

The unknown model parameters (Pt(s|p),Pt(p),Pt(q|p))
can be iteratively estimated using the expectation-maximization
(EM) algorithm [5]. For theExpectation step, the follow-
ing posterior is computed:

Pt(q, p, s|ω) =

P (ω|q, p, s)Pt(s|p)Pt(p)Pt(q|p)∑
q,p,s

P (ω|q, p, s)Pt(s|p)Pt(p)Pt(q|p)
(2)

For theMaximization step, unknown model parameters
are updated using the posterior from (2):

Pt(s|p) =

∑
ω,q

Pt(q, p, s|ω)Vω,t∑
s,ω,q

Pt(q, p, s|ω)Vω,t

(3)

Pt(p) =

∑
ω,s,q

Pt(q, p, s|ω)Vω,t∑
p,ω,s,q

Pt(q, p, s|ω)Vω,t

(4)

Pt(q|p) =

∑
ω,s

Pt(q, p, s|ω)Vω,t∑
q,ω,s

Pt(q, p, s|ω)Vω,t

(5)

Eqs. (2)-(5) are iterated until convergence; 30 itera-
tions are set. No update rule for the sound state templates
P (ω|q, p, s) is included, since they are considered fixed
in the model. As in [1], we also incorporated sparsity
constraints onPt(p) andPt(s|p) in order to control the
polyphony level and the instrument contribution in the re-
sulting transcription. The resulting multi-pitch detection
output is given byP (p, t) = P (t)Pt(p). After performing
5-sample median filtering for note smoothing, thresholding
is performed onP (p, t) followed by minimum note dura-
tion pruning set to 20ms in order to convertP (p, t) into a
binary piano-roll representation.

An example, the ERB representation for the MIREX
multiF0 development woodwind quintet recording can be
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Figure 1. The ERB T/F representation for the first 20sec
of the MIREX multiF0 development recording.
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Figure 2. The pitch activationP (ω, t) for the first 20sec
of the MIREX multiF0 development recording.

seen in Fig. 1; the corresponding pitch activationP (p, t)
can be seen in Fig. 2. The flute trills in the upper register
are particularly evident.

The system is quite efficient computationally, being able
to produce a transcription in about 1.5× real-time in a
Sony VAIO S15 laptop (e.g. for a 30sec recording it re-
quires 45sec). The code for the transcription model (using
the VQT representation as input) is available online1 .

2.3 System variants

Three variants of the system are utilized for the MIREX
2015 evaluation; one trained on the complete instruments
set listed in subsection 2.1 for the multiple-F0 estimation
task (BW1), one trained on the complete instrument set
for the note tracking task (BW2), and a system trained on
piano templates only for the piano-only note tracking task
(BW3).

3. RESULTS

This year, evaluation was performed on two datasets: the
MIREX dataset (used in previous years) and the Su dataset
[11].

On the MIREX dataset, the BW1 system ranked 1st for
the Multiple-F0 Estimation task (Task 1); the BW2 system

1 https://code.soundsoftware.ac.uk/projects/
amt_plca_5d



ranked 1st for the (multi-instrument) Note Tracking task
(Task 2); and the BW3 system ranked 1st for the Piano-
only Note Tracking task (Task 3). Compared to last year’s
submission by the same team of Benetos & Weyde [3], the
current system had an improvement of +1.7% for Task 2
and an improvement of +6.6% for Task 3 (both in terms of
onset-based F-measure).

On the Su dataset [11], our submission ranked 2nd for
the Multiple-F0 Estimation task (Task 1); it ranked 1st for
the (multi-instrument) Note Tracking task (Task 2); and
ranked 1st for the Piano-only Note Tracking task (Task 3).
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