
MIREX 2015: COVER SONGS VIA SEQUENCES OF LOCAL MFCC
SELF-SIMILARITY MATRICES

Christopher J. Tralie
Duke University Department of

Electrical and Computer Engineering
chris.tralie@gmail.com

The Beatles Five Man Acoustical Jam

Ti
m
e

Ti
m
e

Time Time

(a) A block of 4 beats with 400 windows sliding in the song “We Can Work
It Out” by The Beatles with a cover by Five Man Acoustical Jam

Neil Young Annie Lennox

Ti
m
e

Time Time

Ti
m
e

(b) A block of 4 beats with 400 windows sliding in the song “Don’t Let It
Bring You Down” by Neil Young with a cover by Annie Lennox.

Figure 2. Two examples of MFCC SSM blocks which
were matched between a song and its cover in the cov-
ers80 dataset. Hot colors indicate windows in the block
are far from each other, and cool colors indicate that they
are close.

1. INTRODUCTION

The purpose of this MIREX submission is to test an al-
gorithm recently developed in [4] for cover song identi-
fication. While most previous approaches to cover songs
have focused on chromagram representations or represen-
tations of note sequences, we found an approach that ex-
amines sequences local MFCC changes. This approach
has been shown to work suprisingly well on the Covers
80 dataset [3] (44/80), considering absolute pitch informa-
tion is significantly obscured in this representation. This
shows that in spite of conventional wisdom, there are other
“invariants to cover” beyond simply the notes. We like to
think of our MFCC self-similarity matrices as summariz-

(a) Full cross-similarity matrix
(CSM)

(b) 212 × 212 Binary cross-
similarity matrix (BM) with κ =
0.05

(c) Smith Waterman with local
constraints: Score 93.1

Figure 3. Cross-similarity matrix and Smith Waterman on
MFCC-based SSMs for a true cover song pair of “We Can
Work It Out” by The Beatles and Five Man Acoustical Jam.

ing “relative acoustic flow” or “high level riff information,”
which is preserved between different versions of the same
song with different instruments, vocal balance, singers, etc.

More significant algorithmic details can be found in [4].
This document will mainly describe some implementation
details, links to code used, and further experiments that
were not covered in [4].

2. SYSTEM OVERVIEW

Figure 1 shows a block diagram of our system. We sum-
marize small blocks of audio (on the order of 10 beats)
by d × d self-similarity matrices (SSMs) of time-ordered
MFCC features in those blocks. Then, treating each SSM
as a d2 dimensional vector equipped with the L2 norm, we
match sequences of these SSMs using the Smith Waterman
algorithm. We like to think of these sequences of SSMs as
“relative timbral shape sequences,” because they describe
the “shape” of a point cloud of MFCC features in a block
of audio which is invariant to rotation and translation in the
feature space. In more detail, the key steps of our algorithm
(Figure 1) are as follows:

Song A
Beat

Tracking

Tempo Bias A, B
(60/120/180 bmp)

Beat-Synchronous
MFCC Sliding

Window Blocks

BeatsPerBlock (B)

Self-Similarity
Matrix Computation

Image Resize Dimension d

Binary Cross Similarity
A to B with Mutual
Nearest Neighbors

Fraction of Neighbors Kappa

Smith Waterman
Local Alignment

Song B

A
B

A
B

A

B
Final Score
Matching

A To B

A

B

Figure 1. A block diagram of our system

1. Extract beat onset locations using code from [2]. This
is used to control for tempo changes between cover
songs

2. For every block of B contiguous beats in the song,
extract MFCC features in each block using code from
[1]. We use an unusually long MFCC window size
which is the average length of a beat in the song,
and we use a hop size which is 1/10th of a beat
(so roughly 10B MFCC windows per block). Note
that in our original experiments in [4] we took a
hop size of 1/200th of a beat, but we found in fur-
ther experiments (Section 3) that many fewer win-
dows were adequate for this application. We like
to think of the long window size as a sort of anti-
aliasing before creating a lower resolution MFCC
self-similarity matrix, but more theoretical analysis
would be needed to fully back that claim.

3. Point-center and normalize the MFCC windows in
each block, and compute a self-similarity matrix of
the MFCC features in that block (we also tried sim-
ply discarding the zeroeth MFCC coefficient to con-
trol for loudness, as suggested by reviewers, but we
found point centering and normalizing to be supe-
rior). Since the tempo is not completely stable from
beat to beat, there may be a slightly different num-
ber of windows for each beat block. To make com-
parisons between different blocks, we simply resize
the SSMs all to the same dimension d. Figure 2
shows some higher resolution examples of MFCC
self-similarity matrices taken from [4], which show
how these images are similar in blocks from very
different realizations of the same song.

4. Given all of the SSMs for all beat blocks from two
songs A and B, create a cross-similarity matrix, where
each element (i, j) stores the L2 distance between
the SSM corresponding to the ith beat block from
song A and the jth beat block from song B.

Because each every pair of self-similarity matrices
needs to be compared for every pair of cover songs,
this step can be very computationally intensive. To
speed it up, we exploited fast matrix multiplication
of BLAS in Matlab as follows (assuming all SSMs
from song A are stored as rows in the matrixD1 and
likewise for song B and D2):

CSM = b sx fu n (@plus , . . .
dot (Ds1 , Ds1 , 2) , dot (Ds2 , Ds2 , 2) ’) . . .
−2∗(Ds1∗Ds2 ’) ;

We observed a speedup of several orders of magni-
tude over Matlab’s built-in pdist2 for this application
with a large number (d2) of columns.

5. For each cross similarity matrix, we use the Smith-
Waterman algorithm to score the longest diagonal,
which indicates the longest sequence of beat blocks
which are in common between two songs. We found
a binary thresholding before applying Smith Water-
man made our algorithm more robust, and our code
accepts a parameter κ which controls the fraction of
nearest neighbors considered for each point in song
A to neighbors in song B. Figure 3 shows the cross-
similarity matrix (CSM), binary cross-similarity ma-
trix, and Smith Waterman algorithm on a cover song
pair from the Covers 80 dataset.

The Smith Waterman score is computed on the cross-
similarity matrices between all pairs of cover songs in a
database and all cover songs in a query set, which leads to
final ranking of each song in a database to each query song.
A more formal, detailed description of this algorithm can
be found in [4].

3. NEW COVERS 80 EXPERIMENTS

Here we show some results in addition to the ones pre-
sented in [4]. In order for our algorithm to scale to a
larger dataset, we experimented with lower resolution self-
similarity images (50 × 50 instead of 200 × 200) created
from much coarser MFCC information (10 windows per
beat instead of 200), and we found this had little effect on
the results. The table below shows the results for various
choices of κ and beats per block B, all for an SSM dimen-
sion d. The highest number of correct songs identified is
44/80, though the results are fairly stable for different pa-
rameter choices. For the MIREX benchmark, we choose
κ = 0.15 and B = 16, as this gives good results with
low median/mean rank and a smaller number of beats per
block than other parameter choices which gave this result,
meaning computation of SSMs is slightly faster.

4. CODE

Please visit github.com/ctralie/PublicationsCode
under ISMIR2015 CoverSongsShape for all code related to
this project, including an interactive GUI for examining
cross-similarity matrices between two songs and the self-
similarity matrices compared at each pixel

Kappa = 0.05 B = 6 B = 8 B = 10 B = 12
d = 50 24 (8.5 / 19.575) 29 (6 / 17.3) 30 (5.5 / 15.9875) 34 (3 / 13.9125)
Kappa = 0.1
d = 50 27 (11 / 21.0625) 32 (6 / 17.95) 39 (2 / 11.7875) 40 (1.5 / 13.0125)
Kappa = 0.15
d = 50 27 (7 / 17.4875) 34 (2 / 14.1) 39 (2 / 14.15) 42 (1 / 12.4625)
Kappa = 0.2
d = 50 26 (6 / 17.8375) 29 (5.5 / 16.6625) 34 (2.5 / 15.875) 38 (2.5 / 15.225)

Kappa = 0.05 B = 14 B = 16 B = 18
d = 50 39 (2 / 12.45) 42 (1 / 13.525) 42 (1 / 12.1125)
Kappa = 0.1
d = 50 39 (2 / 12.1875) 43 (1 / 11.4625) 43 (1 / 12.5625)
Kappa = 0.15
d = 50 42 (1 / 13.5125) 44 (1 / 12.5) 40 (1.5 / 12.9)
Kappa = 0.2
d = 50 42 (1 / 14.8625) 41 (1 / 13.9125) 40 (1.5 / 13.2375)

Kappa = 0.05 B = 20 B = 22 B = 24
d = 50 41 (1 / 11.6875) 41 (1 / 11.3) 44 (1 / 11.5625)
Kappa = 0.1
d = 50 42 (1 / 13.2) 42 (1 / 14.0875) 41 (1 / 13.6375)
Kappa = 0.15
d = 50 42 (1 / 13.35) 43 (1 / 12.4) 44 (1 / 13.1625)
Kappa = 0.2
d = 50 41 (1 / 13.4625) 40 (1.5 / 13.85) 40 (1.5 / 13.775)

Table 1. New results on the Covers80 experiment, varying
κ and B for d = 50. Number correct is shown, along with
(medan rank / mean rank) in parentheses.

5. ACKNOWLEDGEMENTS

Chris Tralie was supported under NSF-DMS 1045133 and
an NSF Graduate Fellowship.

6. REFERENCES

[1] Dan Ellis. Plp and rasta (and mfcc, and inversion) in
matlab using melfcc. m and invmelfcc. m, 2006.

[2] Daniel PW Ellis. Beat tracking by dynamic program-
ming. Journal of New Music Research, 36(1):51–60,
2007.

[3] Daniel PW Ellis. The “covers80” cover song data set.
URL: http://labrosa. ee. columbia. edu/projects/cover-
songs/covers80, 2007.

[4] Christopher J Tralie and Paul Bendich. Cover song
identification with timbral shape sequences. arXiv
preprint arXiv:1507.05143, 2015.

