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ABSTRACT

This submission to the MIREX 2015 Music Structural
Segmentation task employs a Convolutional Neural Net-
work (CNN) to identify boundaries within a piece of dig-
ital audio. The network was trained on a combination of
mel-scaled log-magnitude spectrograms (MLSs) and self-
similarity lag matrices (SSLMs) with two-level human
structural annotations following the SALAMI guidelines.
It is based on our work presented in Grill and Schlüter [3].
Apart from detecting boundaries, our submission also at-
tempts to assign labels to the resulting segments using a
simple model based on 2D-DCTs and a cosine distance
measure.

1. INTRODUCTION

In order to detect structural segment boundaries in digi-
tal audio, we use an artificial neural network trained in
a supervised fashion on human-annotated data. For this,
we formulate boundary prediction as a binary classifica-
tion problem: Given an excerpt of an audio signal, decide
whether there is a structural boundary at its center or not.
Once we have a model solving this problem, we can apply
it to a sequence of excerpts extracted in a sliding-window
fashion to obtain a curve of boundary probabilities. We
search for peaks in this curve in order to predict bound-
aries in the given music piece.

Here, the music excerpts are represented as mel-scaled
log-magnitude spectrograms (MLSs) and a pair of self-
similarity lag matrices (SSLMs), the classifier is a Convo-
lutional Neural Network (CNN), and the human-annotated
data is an excerpt of the public SALAMI dataset [6] plus
additional data annotated according to the same guidelines.
The training data was carefully selected to be disjoint from
the three datasets used in the MIREX evaluation campaign.

In [3], our method achieved results considerably outper-
forming any submission from MIREX 2012 to 2014 on a
subset of the SALAMI dataset, which contains both clas-
sical and popular music recorded under studio conditions
and in live concerts. For MIREX 2015, we submit the best-

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
c© 2015 The Authors.

performing neural network of [3] tuned for an evaluation
time tolerance of ±0.5 seconds, with a slight modification
on feature preprocessing.

2. METHOD

The different components of our method are detailed in [3],
with references to [4] and [7]. Here, we will only give an
overview and point out what has changed compared to the
previously published work.

2.1 Feature Extraction and Preprocessing

From the audio signal, we compute a mel-scaled logarith-
mic-magnitude spectrogram (MLS) of 80 bands. To be
able to train and predict on spectrogram excerpts near the
beginning and ending of a music piece, we apply a sim-
ple padding strategy for the MLS features. If the first
(or last, respectively) non-zero spectrogram frame has a
mean volume of ≥-40 dBFS, we assume an abrupt bound-
ary and pad the spectrogram with a -100 dBFS constant.
Conversely, we pad with repeated copies of this first or last
non-zero spectrogram frame. To either padding, we add
±3 dB of uniform noise. This is different from [3], where
a padding with low-volume pink noise was used. The re-
sulting MLS is subjected to a HPSS decomposition, yield-
ing a pair of harmonic and percussive MLS components
(see Figure 1). A second feature pair is generated from the
unpadded MLS in the form of self-similarity lag matrices
(SSLMs) with short range (14 seconds) and long range (88
seconds) lag time, respectively. For the SSLMs, the front
and back padding is done in a cyclic (wrap-around) man-
ner, as if the audio is looped.

2.2 Network Architecture and Training

The architecture and training procedure is identical to
the one described in [3, Section 3.3]. The software
runs in Python, using numpy, scipy [5], Theano [1] and
Lasagne [2] packages.

Our networks are trained and validated on a set of
733 music pieces annotated according to the SALAMI
guidelines, but disjoint from the three datasets used in the
MIREX Music Structural Segmentation evaluation [7, Sec-
tion 4]. We used 633 pieces for training, and 100 pieces for
validation, to find the best-performing configurations both
for our study in [7] and for our MIREX submission.
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Figure 1. Example features (MLS-HPSS harmonic and percussive components and SSLMs, short and long range) and
network output for The Weight by Rachel Weber, SALAMI id 1304. For every time frame of the time-synchronous features,
the network computes an output value. Concatenating all values, we obtain a curve of probabilities (bottom panel, opaque
blue) for first-level boundaries for the entire music piece. The probability output for second-level boundaries is shown in
faint blue. Local maxima of the probability curve are boundary candidates; thresholding and windowing them selects the
boundary predictions (red). Ground-truth annotations are shown as short vertical bars (green).

2.3 Boundary prediction from network output

After training, the networks are applied to pieces of mu-
sic. For every spectrogram excerpt, the network computes
a scalar output between 0 and 1, which can be interpreted
as the probability of a boundary occurring at the center of
the excerpt. By applying the network to a sequence of ex-
cerpts, advancing a single time frame between each, we
obtain a curve for the entire music piece (this can be effi-
ciently implemented as a series of convolutions and a final
dot product). With peak-picking, windowing and thresh-
olding, we obtain boundary locations from this curve. The
peak-picking threshold for a given network is chosen to
optimize the boundary retrieval F1-score on the validation
set. See Figure 2 for an illustration of the threshold opti-
mization.

For improved results, we train four identically-para-
meterized networks (instead of five in [3], for efficiency
reasons), starting from different random weight initializa-
tions, and average their output before peak-picking. This
is a standard technique known as bagging.
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Figure 2. Threshold optimization performed on the vali-
dation data set (100 music pieces), with the F1, precision
and recall being the respective mean results over the data
set for a specific threshold value. The optimal value is the
maximum position of a polynomial curve fitted to the F1

results.



2.4 Labeling

In order to apply labels to the segments retrieved by the
strategy outlined in the above sections, we apply a simplis-
tic model. This is just for the sake of labeling at all, and
will be much refined in future contributions.

The mel-scaled log-magnitude spectrogram (before
HPSS decomposition) is segmented at the detected bound-
aries, and each part is subjected to a two-dimensional DCT-
II transformation. We keep a fixed number of components
for both temporal and spectral dimensions and omit the
static components (zero-index DCT bins).

These segment models xi are compared in a pairwise
manner using a cosine distance measure δcos (x,y) =

1 −
〈

x
‖x‖ ,

y
‖y‖

〉
and a penalty factor (with an adjustable

exponent p) for logarithmic differences in segment dura-
tions di

Di,j = δcos (xi,xj) e
|ln(di)−ln(dj)|p. (1)

The inter-segment distances are grouped using hierar-
chical clustering 1 with average/UPGMA linkage, and a
‘distance’ criterion with threshold t.

Experiments on the validation data set have revealed
that the best results are obtained when all spectral DCT
bins are retained (79 bins), but only 9 bins in the temporal
dimension, blurring the representation of temporal evolu-
tion. The threshold t has been set to 0.7, and the penalty
exponent for duration difference p to 0.525. See Figure 3
for an illustration of the segment models and resulting la-
bels for the same music piece as in Figure 1.
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Figure 3. 2D-DCT segment models and resulting labels
for the identified segments in The Weight by Rachel We-
ber, SALAMI id 1304. Labels C and D denote repeated
segments.
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1 http://docs.scipy.org/doc/scipy/reference/
cluster.hierarchy.html, accessed 2015-08-14
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