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ABSTRACT

We present a simple method for extracting the sung voice
from a polyphonic audio mixture. Our approach is to for-
mulate singing voice separation as a classification or re-
gression task, and make use existing systems which at-
tempt to solve this problem. Specifically, our algorithms
use a feature space where the output of existing methods
is coupled with spectral features and matrix decomposi-
tion techniques. Regression and classification models are
trained from this feature space to hard and soft spectral
masks at each pixel in the time-frequency representation of
the mixture. We hope that this will produce an ensemble
method which harnesses the power of existing methods,
but is also robust in cases where individual systems fail.

1. INTRODUCTION

Singing Voice Separation (SVS) is deconstruction of an au-
dio mixture containing several sources into two elements.
These two signals are the sung melody (the vocals) and the
other contains everything else (the background). A popu-
lar approach to solving this problem is to first compute a
short-time Fourier transform of the mixed audio. This re-
sults in a matrix X ∈ CF×T , where f = 1, . . . , F and
t = 1, . . . , T index frequency and time respectively. A
power spectrum P = |X|2 is then computed, from which a
vocal mask M of the same shape is constructed. Masks are
either hard

(
M ∈ {0, 1}F×T

)
or soft

(
M ∈ RF×T

)
and

can be inferred using expert knowledge, signal processing
techniques and/or learned from data using machine learn-
ing techniques. Once a vocal mask has been computed,
the Hadamark (element-wise) product of M and X is used
to compute a vocal spectrum. This vocal spectrum is then
inverted back to the time domain, resulting in a vocal au-
dio track. The background audio may then be obtained by
subtracting the inferred vocals from the mix.

In this submission, we take a simple ensemble classi-
fication approach to the SVS problem. For each ‘pixel’
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p ∈ P in the power spectrum we compute a collection of
features, and use these to classify how likely this pixel is
to contain vocals. In the remainder of this extended ab-
stract we outline our feature extraction methods (Section
2), classification scheme (Section 3), and give preliminary
experimental results (Section 4), before finally concluding
and discussing future directions of research (Section 5).

2. FEATURE EXTRACTION

Let p ∈ P be a pixel in P. There are many possible
features which may be informative of the vocal activity
at p, some of which have proven efficacious in previous
research. Specific examples include Harmonic Percussive
Source Separation analysis [3] and Robust Principal Com-
ponent Analysis [1]. However, the soft masks produced
by existing systems are no doubt also extremely informa-
tive features of the vocal activity at p. These features will
then be fed into classification and regression models (see
Section 3), meaning that expert systems are able to ‘learn’
which pixels represent vocal activity. We therefore ex-
tracted the following features for each p ∈ P:

• The log power at p, log10(p).

• The frequency associated with p.

• 4 Gabor filters centered at p with horizontal, vertical
and diagonal rotations. The filters were chosen to
have spatial frequency equal to 0.8, horizontal band-
width equal to 1 and vertical bandwidth equal to 3.

• The sparse component of a robust-PCA analysis of
P at p.

• The harmonic component of a harmonic-percussive
source separation analysis of P at p.

• The output of REPET-SIM [6] 1 applied to P at p.
REPET-SIM attempts to extract the repeating back-
ground of a spectrum, prompting us to use 1− the
value of the soft mask produced by REPET-SIM.

• The output of the deep learning system proposed by
[2] 2 applied to P at p.

1 http://www.zafarrafii.com/codes/repet_sim.m
2 https://github.com/posenhuang/

deeplearningsourceseparation



SDR SIR SAR

Mask type Voice Music Voice Music Voice Music

Hard 7.12± 2.47 3.80± 4.35 9.46± 8.20 19.02± 5.38 6.17± 3.47 6.20± 3.52
Soft 8.77± 4.11 5.00± 2.56 18.66± 8.73 12.18± 5.35 5.61± 3.31 5.67± 3.44

Table 1. Source to Distortion Ratio (SDR), Source to Interferences Ratio (SIR), Sources to Artifacts Ratio (SAR) for our
experiments. All results are measured in dB relative to the true mix.

3. CLASSIFICATION MODELS

We present two models in this submission. The first learns
a hard mask from the feature space to {0, 1}, for which
we use logistic regression. Our second model learns a soft
mask from the feature space to a ratio of the vocal energy
to the total energy at each pixel in the mixture.

Our system requires ground truth masks for training,
which we constructed in the following way. Given power
spectra PMix,PAca,PIns representing the mixed audio, acapella
and instrumental sources, hard and soft ground truth hard
masks were created by element-wise comparison:

Mhard =

{
1 if PAca > PIns

0 otherwise

Msoft = max (min (PAca/PMix, 1.0) , 0.0)

Here the soft mask is constructed from the ratio of vocal
energy to total energy, normalised to be in the range [0, 1].
For the hard mask, a logistic regression model was then
fitted from the feature space to Mhard. The soft mask was
mapped from [0, 1] to (−∞,∞) via the logit function. An
ordinary least squares model regression model was trained
from the feature space to this logit-transformed soft mask,
and finally logistically transformed back to [0, 1] in the
testing phase after prediction.

4. EXPERIMENTS

Our model was trained using data from the publicly-available
subset of the iKala dataset 3 . For scalability reasons, audio
was downsampled to 16kHz, and only every 10th frame of
the ground truth spectra and masks were used for training
the models. Audio processing was conducted using librosa
[4] and sci-kit image [7], classification was performed us-
ing scikit-learn [5], and evaluation was performed using
the BSS-toolbox [8]. Evaluation was conducted using 10−fold
cross validation. 25 songs were held out for test - the re-
maining 227 were used for training in each fold. Mean
and standard deviation of SDR (Signal to Distortion Ra-
tio), SIR (Source to Interference Ratio), and SAR (Source
to Artifacts Ratio) for both hard and soft mask versions of
our method are shown in Table 1.

Comparing the results from Table 1 to the top-performing
submission from MIREX 2014 (IIY2), our approach achieves
superior SDR for the sung voice (8.77dB c.f. 4.47dB),
but worse SDR for the musical background (5.00dB c.f.
7.87dB). In terms of SAR and SIR, our method achieves

3 http://mac.citi.sinica.edu.tw/ikala/

similar results. Our hard mask approach appears to per-
form better in terms of SAR, prompting us submit both
versions for evaluation. In our final submission, we trained
our model on all available data from the iKala dataset.

5. CONCLUSIONS

We presented a simple method for separating the sung voice
from a polyphonic mix which harnesses the power of ex-
isting systems as input features. Internal testing revealed
superior singing voice SDR compared to the cutting-edge
system from MIREX 2014.

Our current system learns a map from the feature space
to a mask at each pixel in the mixture spectrum indepen-
dently. One may think of these as the ‘observations’ in a
graphical model, with ‘hidden’ states representing the vo-
cal activity at a pixel. We were pleasantly surprised to see
that the existing system performed well, but are excited
about the possibility of also training a model on the hid-
den chain of states, encoding the dependencies between
‘neighbouring’ pixels, where the neighbourhood may en-
code nearby pixels in the time, frequency, or harmonic
spaces.
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