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ABSTRACT

The compositional hierarchical model has been well ex-
plored for several tasks in the field of music information re-
trieval, including the automated chord estimation and mul-
tiple fundamental frequency estimation. This submission
introduces the compositional approach to the symbolic rep-
resentations of the music scores by using the model’s struc-
ture which was applied to the audio domain. We adjusted
the model for the task of pattern discovery in monophonic
symbolic data.

1. INTRODUCTION

As an alternative to the existing deep learning architec-
tures, a compositional hierarchical model (CHM) was in-
troduced to the MIR field by Pesek et al. [3], based on the
model in computer vision, developed by Leonardis and Fi-
dler [2]. Its main difference between the model and other
deep architectures is in its transparent structure, thus al-
lowing representation and interpretation of the signal’s in-
formation extracted on different levels.

This submission presents a novel application of the CHM
for pattern discovery in symbolic music representations.
While retaining the structure and the applied methods pre-
sented in [3], the model was adjusted for the two-dimensional
symbolic input.

2. COMPOSITIONAL HIERARCHICAL MODEL

The compositional hierarchical model provides a hierar-
chical representation of the audio signal, from the signal
components on the lowest level, up to individual musi-
cal events on the highest levels. The model is built on
the belief of the signal’s ability of hierarchical decompo-
sition into atomic blocks, denoted as parts. According to
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their complexity, these parts can be structured across sev-
eral layers from less to the more complex. Parts on higher
layers are expressed as compositions of parts on lower lay-
ers — similarly as a chord is composed of several pitches,
or a pitch represents a composition of several harmonics.
A part can therefore describe individual frequencies in a
signal, their combinations, as well as pitches, chords and
temporal patterns, such as chord progressions.

The CHM was previously introduced to the MIR com-
munity [3]. The model with a three-layer structure was first
used for the automated chord estimation task. The output
was mapped to a chroma-like octave-invariant representa-
tion and used as an input to a Hidden Markov model. Due
to the white-box approach, the model was later extended
to the task of multiple fundamental frequency estimation
using the same three-layer structure. The third layer part
structures were observed as pitches or pitch-partial with
activations indicating the location and probability of their
occurrence. By using the same chroma-like approach de-
scribed in [5], authors showed the same features can also
be used for the mood estimation task similarly to the usage
of MFCC and other features [3]. Furthermore, the authors
showed the model’s features outperform the chroma fea-
tures in robustness to noise [4] for the automated chord es-
timation task. However, the evaluated tasks are all audio-
input based. We adjusted the model to perform by using
symbolic data as an input.

2.1 Input layer

The input layer L0 of the model is a symbolic represen-
tation of the music signal, consisting of a set of pitches,
each defined by an onset and an offset. It contains a set of
atomic parts (pitches), which are activated (is present in the
signal) at any MIDI location and any given time. Similar
to the original model, where any time-frequency represen-
tation can be used for the input layer, any two-dimensional
representation — in this case pitch-time representation —
can be used as an input to the adjusted version.

2.2 Subsequent layers

Higher layers Ln of the model contain sets of composi-
tions - parts composed of parts from lower layers. Each
composition contains two parts from the lower layers. A



composition can be part of any number of compositions on
higher layers. ALn part is a composition which consists of
two structures Pn−1,j and Pn−1,k — parts on Ln−1 layer.
The relation is represented relatively as an offset in pitch,
thus:

Pn,i = {Pn−1,j , Pn−1,k, µn,i}. (1)

The offset parameter µn,i is learnt for each composition
from the input data during the learning stage of the model.
Due to the discrete nature of the symbolic input, there is no
need to model the offset by a Gaussian as it is done in the
original CHM. Since the first subpart serves as the base for
defining the relative offset between itself and the second
subpart, we denote the first subpart (Pn−1,j) the central
part.

The SymCHM is used in the same two-stage manner as
the CHM. During the first, the build stage, the model is
developed layer-by-layer. By composing atomic L0 parts,
the model first produces compositions of two pitches (L1).
To retain the compositions which cover the most informa-
tion in the input layer, a statistical approach is employed.
Based on the compositions’ occurrence, the learning pro-
cess retains the compositions which are more frequently
activated.

2.3 Activations

A composition is activated (propagates output to higher
layers) when all of its subparts are activated. For theL0, all
input data is treated as a set of activations at given locations
in terms of time offset and pitch. For consequent layers,
there are two factors which limit the activations for a given
part Pn,i:

• the pitch offset between the activations of Pn,i

subparts

• the time offset between the activations of Pn,i

subparts.

The pitch offset between the activations of subparts must
be equal to the µn,i, whereas the time offset is modelled by
a threshold. The latter results in a window-like mechanism
where two activations, each belonging to one of the Pn,i

subparts, are considered for a Pn,i activation only if they
occur inside the window. This limitation can be observed
as a short-term memory-like mechanism. With each con-
sequent layer, the time-offset threshold loosened with the
factor of 2n. Thus, the window grows exponentially with
the granularity and complexity of the parts. Finally, the
time-offset threshold also reduces the time complexity of
the learning stage.

3. CHM FOR PATTERN DISCOVERY

Due to the statistical nature of the model’s learning be-
haviour, more frequently activated parts are retained on
each layer. The activations can be observed as locations
of part’s occurrences, thus, the amount of part’s activations

indicates the significance of the part’s structure (i.e. a re-
peated pattern) in the signal. A part can thus be observed
as a medium for aggregation of re-occurring patterns.

On the contrary to the spectral CHM, complex temporal
patterns are not commonly shared between different musi-
cal pieces, with obvious exceptions of patterns shared be-
tween several musical pieces of the same artists, remakes
or other influenced work. For this task, we therefore build
a new model for each musical piece. After the learning
process, the model’s activations are produced through the
output of the model where every part is observed as a pat-
tern and each activation belonging to that part as a pattern
occurrence.

4. RESULTS

The SymCHM was evaluated on the JKU PDD dataset for
the symMono subtask. For each musical piece, the model
was built independently and inferred with the same piece.
We built a structure with six layers. The model’s output,
which was used during the evaluation, consists of activa-
tions of parts on layers L4, L5 and L6. We performed a
simple pattern picking of all three layers. The latter is sim-
ilar to the union (all three layers of patterns are merged
into a single output), where the patterns which are subsets
of other patterns are removed. For example, a 4th layer
pattern is not included if the pattern represents a subpart of
a 5th layer composition.

We built and inferred a separate model with each musi-
cal piece provided in JKU PDD dataset as an input to the
model. We constrained the model’s parameters to a hand-
picked combination. The parameters could be further op-
timized; however, the goal of this submission is to show
the sheer ability to adapt the model to the pattern discov-
ery task, thus we leave the parameter optimization for the
future work.

Table 1. Inhibition an hallucination parameters of the
learnt structure for the pattern discovery task. Though not
optimised, the results show the adjustment of the model
for the task is worthwhile. The parameters can be adjusted
individually per layer.

Mechanism layers 1 - 6
Inhibition 0.2
Hallucination 0.7

The results of the evaluation are shown in Table 2. For
the evaluation and comparison of the output to the ground
truth, we used the script, provided by Tom Collins [1]. The
results display the commonly used metrics for the task.
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[3] Matevž Pesek, Aleš Leonardis, and Matija Marolt. A
compositional hierarchical model for music informa-
tion retrieval. In Proceedings of the International Con-
ference on Music Information Retrieval (ISMIR), pages
131–136, Taipei, 2014.
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