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ABSTRACT

In this report, we describe several similarity measures which
we use for the task of Symbolic Melodic Similarity (SMS)
in MIREX 2015.

1. INTRODUCTION

We consider similarity measures between music pieces s
that are combinations of a preprocessing p of music pieces
into particular sequential representation, and a string simi-
larity measure δ. That is, d is given by d(x, y) = δ(p(x), p(y)),
where x, y are music pieces.

In the research field of string algorithms many string
(dis)similarity measures have been proposed, such as the
edit distance [7], the longest common subsequence (LCS)
length [2], the normalized compression distance (NCD) [1],
which are used in many applications such as automatic
spelling correction, information retrieval, gene information
analysis and so on. String kernels such as the n-gram ker-
nel [5], the mismatch kernel [4], and the subsequence ker-
nel [6], which are used in the machine learning field, are
also string similarity measures.

2. OVERVIEW

From MIDI files, we remove MIDI events other than the
NOTE ON/OFF events and quantized the NOTE ON/OFF
times with unit time corresponding to the sixteenth note
length. We merge all the tracks/channels of each MIDI
file into one. The result can then be viewed as sequences
of pitch sets that are “ON” in respective unit time inter-
vals. Since the input music pieces are assumed to be mono-
phonic, the pitch sets are empty or singleton. By ignoring
octave differences, we can transform input music pieces
into strings consisting of 13 symbols representing pitches
and rests.

Let x, y be pitch/rest sequences obtained from MIDI
files. Let x ⊕ d denotes the pitch/rest sequence obtained
from x by transposing the key of x by d semi-tones. Then
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the similarity between x and y is defined by

SIMs(x, y) = max{s(x⊕ d, y) | d = 0, 1, . . . , 11},

where s is a similarity measure on strings.

3. NCD WITH LZF

The Normalized Information Distance (NID) between two
strings x and y is defined as follows.

NID(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)}

,

where K(·) and K(·|·) denote the Kolmogorov complexity
and the conditional Kolmogorov complexity, respectively.
Letting K(x|y) ≈ K(yx) −K(y) and replacing the Kol-
mogorov complexity K(·) by compressed data size C(·)
with an appropriate compression program C, we obtain
the Normalized Compression Distance (NCD). More for-
mally, the NCD between strings x and y is then defined as
follows.

NCDC(x, y) =
max{C(xy)− C(x), C(yx)− C(y)}

max{C(x), C(y)}
,

where C(z) denotes the compressed size of string z using
a compression program C. It should be stated that we do
not assume C(yx) = C(xy) in the above equation in order
to keep NCDC(x, y) = NCDC(y, x).

The NCD values strongly depend on the compressor C.
We use the Lempel-Ziv factorization (LZF), which is an
abstraction of LZ77 compression algorithm.

Definition 1 (LZ-factorization) The LZ-factorization of a
string T is the factorization T = f1 · · · fn where each LZ-
factor fk ∈ Σ+ (k = 1, . . . , n) is defined inductively as
follows: f1 = T [1]. For k ≥ 2: if T [|f1 · · · fk−1| + 1] =
c ∈ Σ does not occur in f1 · · · fk−1, then fk = c. Oth-
erwise, fk is the longest prefix of fk · · · fn that occurs at
least twice in f1 · · · fk.

4. FLDC KERNEL

Let m and k be fixed integers with m > 0 and 0 ≤ k ≤ m.
Let

F(m,k) = {q | q ∈ (Σ ∪ {•})m and #(q) ≤ k},



where #(q) denotes the number of occurrences of • within
q. We note that when k = 0 the set F(m,k) is the set of
strings of length m. The FLDC kernel is defined as fol-
lows.

Definition 2 (FLDC kernel) For any strings s, t ∈ Σ∗,
we define the FLDC Kernel Kf (x, y) by

Kf (x, y) =
∑

q∈F(m,k)

Freqq(x) · Freqq(y).

We note that the FLDC kernel with k = 0 is the N-gram
kernel. In this sense it is a natural extension of the N-gram
kernel that allows up to k mismatches.

The FLDC kernel is closely related to the mismatch ker-
nel in the sense that both the kernels allow mismatches up
to k in strings of length m. The difference is in that the
positions at which mismatches are allowed in strings are
explicitly specified with •’s in the FLDC kernel. Suppose
that (m, k) = (5, 2), and input strings s and t, respec-
tively, contain x = aaaac and y = bbbbc as substrings.
The strings x and y are dissimilar in the sense that their
Hamming distance d(x, y) = 4 is greater than the thresh-
old k. But we have d(x, z) = d(y, z) = 2 ≤ k for any
z ∈ {aabbc, ababc, abbac, baabc, babac, bbaac} and thus
they increase the kernel value in the mismatch kernel. On
the other hand, the strings x and y have no common FLDC
patterns in F(5,2) and do not affect the kernel value in the
FLDC kernel.

Although the feature space of the FLDC kernel is larger
than that of the mismatch kernel, the time complexity of
computing the kernel values for the FLDC kernel is the
same as that for the mismatch kernel.

One naive method would be, for all patterns q in F(m,k),
to compute the frequencies Freqq(x) and Freqq(y) of q in
given strings x and y. The size of F(m,k) is, however:

|F(m,k)| =
k∑

i=0

( m
i

)
σm−i = O(mkσm),

where σ denotes the alphabet size. The total time is O((|x|+
|y|)mk+1σm), and thus the method is impractical. An
O(mk) time pre-computation enables us to compute Kf (x, y)
in O(m|x||y|) time for any strings s and t. By using a simi-
lar idea of the technique used for accelerating the mismatch
kernel computation [3], a further improvement is possible.

Theorem 1 For any strings x and y, Kf (x, y) can be com-
puted in O(cm,k(|x|+ |y|)) time, where cm,k is a constant
independent of the alphabet size.
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