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ABSTRACT 

We present a music and speech part detection method in-

corporating chroma vector analysis. We apply image-

based mask filters to the time-series chroma components 

and detect music parts. The envelopes of chroma compo-

nents of music signals tend to have a horizontal (i.e. tem-

poral) correlation in time-frequency representation be-

cause music signals have periodic chord sequences. Based 

on this fact, we analyze time series of chroma components 

and attempt to segment music and speech parts in audio 

signals. 

1. INTRODUCTION 

We focus on chroma vectors, defined as a 12-dimensional 

vector that represents the intensity of the 12 semitones 

pitch classes of the chromatic scale irrespective of octaves 

[1]. Chroma vectors accommodate harmonic musical 

structure. They are often used for chord recognition. One 

might note the horizontal (i.e. temporal) correlation of 

chroma components in the music scene, but not in a speech 

scenes because music has harmonic contents and consists 

fundamentally of chord sequences. Speech scene includes 

pauses and has no salient periodicity. 

In this task, we present a proposed method as shown in Fig. 

1. We extract envelopes of chroma vectors in time series 

to define a mask filter and compute an energy ratio of 

masked chroma peaks to total peaks for each frame. 

Chroma peaks are peak components filtered by the mask 

and total peaks are peaks of chroma that is not filtered. The 

mask filter is derived using image processing techniques 

that are applied to time-frequency representation of acous-

tic inputs. Then the acoustic signals are classified into two 

parts: music and speech. 

2. ALGORITHM 

2.1 Chroma vector 

For this study, we calculate chroma vectors of three types: 

Chroma Pitch-base (CP), Chroma Log Pitch (CLP), and 

Chroma DCT-Reduced log Pitch (CRP). Each element of 

chroma vectors is represented by 8-bit. First, we calculate 

the CP by adding up the corresponding values that belong 

to the same pitch class. Second, we extract the CLP fea-

tures by applying a logarithmic compression of a pitch rep-

resentation. A multirate filter bank is designed to calculate 

the pitch representation of each pitch. It passes all frequen-

cies around the respective center frequency, disregarding  

 

Figure 1. Overview of our proposal 

 

Figure 2. Envelope extraction using four neighborhood 

bins at peak bin 

all other frequencies. The sampling frequencies change to 

decrease the time resolution naturally for lower frequen-

cies. Then, each energy value e of the pitch representation 

is calculated using the value log(𝜂 ⋅ 𝑒 + 1), where η is a 

positive constant. We use the number of upper coefficients 

η = 100, as described in an earlier report [2]. Third, to cal-

culate CRP, DCT is applied to the logarithmic pitch repre-

sentation. The upper coefficients of the pitch-frequency 

cepstrum are employed to the inverse DCT. For our exper-

iments, we use the number of upper coefficients p=55 sim-

ilar to a report of the literature [2]. The tool used to calcu-

late CP, CLP and CRP features is also provided by chroma 

toolbox [3]. 

2.2 Mask filter based on image processing 

We detect peaks of chroma components in each frame as 

shown in Fig. 1, because peaks are regarded as a harmony 

transition. Then, we calculate curvatures to extract 

envelopes using four neighborhood bins at peak C(t, i), 

where t is a frame number and i is a bin number of a 

chroma vector, as shown in Fig. 2. An initial mask is de-

fined using a binary mask, where 1 represents the existence 

of temporal consecutiveness of the chroma, and 0 means 

no existence. This initial mask is shown by 
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where t checks horizontal (temporal) correlation and i 

checks vertical correlation, defined respectively as  
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for the curvature. We furthermore apply bilateral filters 

[4] to the initial mask to eliminate noise in the speech 

part. 

2.3 Energy ratio calculation and classification 

We calculate chroma energy ratio of the masked peak com-

ponents to total components in each frame. The energy ra-

tio R(t) is calculated by 
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where Cpeak(t, i) is the detected chroma peak. This R(t) is 

then smoothed by taking one second median filter, which 

is formulated as 

)}({median)(ˆ tRtR                         (4) 

The window size of the median filter is determined by 

auxiliary experiment. The ratios of the music scene differ 

from those of the speech. This energy ratio is then used to 

classify the acoustic signals as music parts or speech. 

Herein, this classification is done by simple thresholding:  
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where 1 and 0 represent the music scene and other parts in 

each frame, respectively, and the threshold is pre-specified. 

All labels are smoothed similarly by taking one second av-

erage. 
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