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ABSTRACT

This abstract describes the motif discovery algorithm based
on Variable Markov Oracle (VMO) for the MIREX 2015
Discovery of Repeated Themes and Sections task. VMO
is a suffix automaton capable of indexing multivariate time
series. The algorithm identifies repeated sub-clips from an
audio recording by returning the ending points and dura-
tions for found repeated sub-clips. Chroma is used as the
input to the algorithm. The implementation for this algo-
rithm is publicly accessible.

1. INTRODUCTION

Automatic discovery of musical patterns (motifs, themes,
sections, etc.) is a task defined as identifying salient musi-
cal ideas that repeat at least once within a piece [2,9] with
computational algorithms. The patterns found here may
overlap with each other and may not cover the entire piece.
In addition, the occurrences of these patterns could be in-
exact in terms of harmonization, rhythmic pattern, melodic
contours, etc. Lastly, hierarchical relations between mo-
tifs, themes and sections are also desired outputs of the
pattern discovery task.

Two major approaches for symbolic representations are
the string-based and the geometric methods. A string-based
method treats a symbolic music sequence as a string of to-
kens and applies string pattern discovery algorithms on the
sequence [1,13]. A geometric method views musical pat-
terns as shapes appearing on a score and enables inexact
pattern matching as similar shapes imply different occur-
rences of one pattern [3, 12]. For audio representations,
geometric methods for symbolic representations have been
extended to handle audio signals by multi F'0-estimation
with beat tracking techniques [4]. Approaches adopted
from music segmentation tasks using self-similarity matri-
ces and greedy search algorithms are proposed in [14, 15].

The algorithms described in this abstract can be seen
as a string-based method in which input features are sym-
bolized. The algorithms consists of two blocks: 1) feature
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extraction with post-processing routines and 2) the pattern
finding algorithm. For audio representations, chroma fea-
tures are extracted and post-processed based on musical
heuristics, such as modulation, beat-aggregation, etc. The
core of the pattern finding algorithm is a Variable Markov
Oracle (VMO). A VMO is a data structure capable of sym-
bolizing a signal by clustering the observations in a signal,
and is derived from the Factor Oracle (FO) [11] and Audio
Oracle (AO) [7] structures.

2. FEATURE EXTRACTION

The routines for extracting the chromagram from an au-
dio recording used in this algorithm is as follows. For a
mono audio recording sampled at 44.1 kHz, the recording
is first downsampled to 11025 Hz. Next, a spectrogram
is calculated using a Hann window of length 8192 with
128 samples overlap. Then the constant-Q transform of the
spectrogram is calculated with frequency analysis ranging
between fiin = 27.5 Hz to fiae = 5512.5 Hz and 12
bins per octave. Finally, the chromagram is obtained by
folding the constant-Q transformed spectrogram into a sin-
gle octave to represent how energy is distributed among the
12 pitch classes.

To achieve the pattern discovery on a music metrical
level, the chroma frames are aggregated with a median fil-
ter according to the beat locations found by a beat tracker
[8] conforming to the music metrical grid. For finer rhyth-
mic resolution, each beat identified is spliced into two sub-
beats before chroma frame aggregation. Last, the sub-beat-
synchronous chromagram is whitened with a [og function.
Whitening boosts the harmonic tones implied by the mo-
tifs so that the difference between the same motif with and
without harmonization is reduced.

3. VARIABLE MARKOV ORACLE

In this section, we briefly introduce VMO. Technical de-
tails and pseudo codes could be found in [17,19]. FO is
a suffix automaton devised for retrieving patterns from a
symbolic sequence [11]. AO is the signal extension of FO
capable of indexing multi-variate timeseries, and has been
applied to audio query [5] and audio structure discovery
[6]. As mentioned earlier, FO tracks the longest repeated
suffix of every “letter”” along a symbolic sequence by con-
structing an array, sfx, storing the position of where the
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Figure 1. (Top) A VMO structure with symbolized sig-
nal {a,b,b,c,a,b,c,d,a,b,c}, upper (solid) arrows repre-
sent forward links with labels for each frame and lower
(dashed) are suffix links. Values outside of each circle are
the 1rs value for each state. (Bottom) A visualization of
how patterns {a, b, ¢} and {b, c} are related to Irs and s fz.

longest repeated suffix happened, and an 1rs array storing
the length for the corresponding longest repeated suffix.
AO extends FO by implicitly symbolizing each incoming
observation of a multi-variate time series. VMO combines
FO and AO in the sense that the symbolization of AO is
made explicit in VMO. The explicit symbolization is done
by assigning labels to the frames linked by suffix links. As
a result, VMO is capable of symbolizing a signal by clus-
tering the feature frames in the signal and keeps track of
where and how long the longest repeated suffix is for each
observation frame.

Since VMO stores the length and positions of the re-
peated suffixes within a time series, using VMO to find
motifs within a time series is then straight forward. In [19],
a motif finding algorithm using VMO for multi-variate time
series is proposed. The algorithm sweeps through the length
and location of longest repeated suffixes for each frame and
filters out the repeated suffixes that are non-trivial (sub-
motifs enclosed by longer motifs are considered trivial)
and above a minimum length. Fig. 1 shows an example
of a constructed VMO and how 1rs and sfx are related
to motif discovery.

4. MOTIF DISCOVERY ALGORITHM WITH YMO

For the specific task of repeated themes discovery, a pattern
discovery algorithm is devised based on VMO and shown
in Algorithm 1. The idea behind the algorithm is to track
patterns by following sfx and 1rs. sfx provides the lo-
cations of repeated suffixes and 1rs contains the length
for these repeated suffixes. In line 5 of Algorithm 1, state
1 is checked to make sure no redundant patterns are rec-
ognized and the lengths of patterns are larger than a user-
defined minimum L. From line 6 to 10, the algorithm rec-
ognizes occurrences of established patterns and from line
11 to 15 it detects new patterns and stores them into Pttr
and PttrLen. Algorithm 1 returns Pttr, Pttr Len and K.
Pttris alist of lists with each Pttr[k], k € {1,2,..., K},
a list containing the ending indices of different occurrences
of the kth pattern found. K is the total number of patterns
found. PttrLen has K values representing the length of

Algorithm 1 Pattern Discovery using VMO

Require: constructed VMO, V, of length 7" and a minimum pattern
length L.
Ensure: sfx,rsfx,lrs € V
1: Initialize Pttr and PttrLen as empty lists.
2: Initialize prevSfz = -1, K =0
3: fori=T:Ldo
pttr Found = False
ifi—1lrsy[il+1> sfxy[i]Astxy[i] #O0Alrsy[i] > L
then

A

6: it 3k € {1,..., K}, stx[i] € Pttr[k] then
7: Append ¢ o Ptir[k]
8: PitrLenlk] < min(lrs[i], Pttr Len[k])
9: pttr Found = True
10: end if
11: if prevSfx — sfx[i] # 1 A pttr Found == False then
12: Append {s£x[i], i, rsfx[i]} to Pttr
13: Append min{1rs[{s£x[é], i, rs£x[i|}]} to PttrLen
14: K+ K+1
15: end if
16: prevS fx < sfx|i]
17: else
18: prevSfxr + —1
19: end if
20: end for

21: return Pttr, Pttr Len, K
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Figure 2. (Top) Beat-synchronous Chromagram, (Middle)
Ground truth from JKU dataset. (Bottom) Found patterns
by Algorithm 1.

the kth pattern in Pttr.

After the feature sequence O is extracted from the au-
dio recording as described in the section 2, thresholds 6 €
{0.0,0.001,0.002, . ..,2.0} are used to construct multiple
VMOs with O, then the one VMO with the highest IR is
fed into Algorithm 1 with L set to 5 empirically to find
repeated themes and their occurrences. The result for find-
ing repeated themes in one of the audio recordings from
the dataset is shown in the bottom plot of Fig 2.

To consider transposition (moving patterns up or down
by a constant pitch interval), the distance function used
for VMO structures is a cost function with transposition
invariance. For a transposition invariant cost function, a
cyclic permutation with offset k£ on an n-dimensional vec-
tor x = (xg, z1,...,Tn—1) is defined as

n-— 1)}3

and the transposition invariant dissimilarity d between two
vectors  and y is defined as, d = ming{||z — cpr(y)|2}-
n = 12 for the chroma vector, and the cost function is used
during the VMO construction.

cpr(X) == {Zi = T(itk mod n)> Vi € (0,1,...,
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