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ABSTRACT 

Audio classification, the segmentation of an audio signal 

into broad categories such as speech, non-speech, and si-

lence, is an important front-end problem in speech signal 

processing. Dozens of features have been proposed for 

audio classification. Unfortunately, these features are not 

directly complementary and combining them does not im-

prove classification performance. Feature selection pro-

vides an effective mechanism for choosing the most rele-

vant and least redundant features for classification. 

1. INTRODUCTION 

Initial segmentation of audio signals into broad categories 

such as speech, non-speech, and silence, provides useful 

information for audio content understanding and analysis 

[1], and it has been used in a variety of commercial, fo-

rensic and military applications [2]. Most audio classifica-

tion systems involve two processing stages: feature ex-

traction and classification. There is a considerable amount 

of literature on audio classification regarding different 

features [3] or classification methods [4]. Many features 

[5] have been developed to improve classification accura-

cy. Nevertheless, using all of these features in a classifica-

tion system may not enhance but instead degrade the per-

formance. The underlying reason is that there can be  ir-

relevant, redundant, and even contradictory information 

among these features. Choosing the most relevant features 

to improve the classification accuracy is a challenging 

problem [6]. 

2. SEMI-SUPERVISED FEATURE SELECTION 

FOR AUDIO CLASSIFICATION 

Assuming that an audio signal has been divided into a 

sequence of audio segments using a segmentation algo-

rithm or timestamp, audio classification focus on the 

classi-fication of categorizing these audio segments into a 

set of predefined audio classes. 

Fig. 1 illustrates the process of audio classification. In an 

audio classification sys-tem, every audio signal is first 

divided into mid-length segments which range in dura-

tion from 0.5 to 10 seconds. After this, the selected fea-

tures  are extracted for each segment using short-term 

overlapping frames. The sequence of short-term features 

in each segment is used to compute feature statistics, 

which are used as inputs to the classifier. In the final 

classification stage, the classifier determines a segment-

by-segment decision. 

 

Figure 1. The audio classification framework. 

In audio analysis and classification there are dozens of 

features which can be used. Widely-used time-domain 

features [5] include short-term energy [7], zero-crossing 

rate [8], and entropy of energy [9]. Common frequency-

domain features include spectral centroid, spectral spread, 

spectral entropy [10], spectral flux, spectral roll-off, 

MFCCs, and chroma vector [11]. 

There is a lot of complementary information among these 

features which can im-prove classification accuracy when 

used together; however, there is also a lot of re-dundant 

and even contradictory information which can decrease 

performance. It is hard to judge which combination of 

features is most likely to have a positive effect on classi-

fication. Furthermore, it is computationally infeasible to 

select the optimal feature subset by exhaustive search. 

Thus, it’s important to implement an effective feature se-

lection method for this task. 

Most supervised feature selection methods are dependent 

on labeled data. Unfortunately, it is difficult to obtain 

sufficient labeled data for audio classification, while un-

labeled data is readily available. Semi-supervised feature 

selection methods can take good use of both labeled and 

unlabeled data, thus this approach is more practical. 
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