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ABSTRACT

Audio classification, the segmentation of an audio signal
into broad categories such as speech, non-speech, and si-
lence, is an important front-end problem in speech signal
processing. Dozens of features have been proposed for
audio classification. Unfortunately, these features are not
directly complementary and combining them does not im-
prove classification performance. Feature selection pro-
vides an effective mechanism for choosing the most rele-
vant and least redundant features for classification.

1. INTRODUCTION

Initial segmentation of audio signals into broad categories
such as speech, non-speech, and silence, provides useful
information for audio content understanding and analysis
[1], and it has been used in a variety of commercial, fo-
rensic and military applications [2]. Most audio classifica-
tion systems involve two processing stages: feature ex-
traction and classification. There is a considerable amount
of literature on audio classification regarding different
features [3] or classification methods [4]. Many features
[5] have been developed to improve classification accura-
cy. Nevertheless, using all of these features in a classifica-
tion system may not enhance but instead degrade the per-
formance. The underlying reason is that there can be ir-
relevant, redundant, and even contradictory information
among these features. Choosing the most relevant features
to improve the classification accuracy is a challenging
problem [6].

2. SEMI-SUPERVISED FEATURE SELECTION
FOR AUDIO CLASSIFICATION

Assuming that an audio signal has been divided into a
sequence of audio segments using a segmentation algo-
rithm or timestamp, audio classification focus on the
classi-fication of categorizing these audio segments into a
set of predefined audio classes.

Fig. 1 illustrates the process of audio classification. In an
audio classification sys-tem, every audio signal is first
divided into mid-length segments which range in dura-
tion from 0.5 to 10 seconds. After this, the selected fea-
tures are extracted for each segment using short-term
overlapping frames. The sequence of short-term features
in each segment is used to compute feature statistics,
which are used as inputs to the classifier. In the final

Wei-Qiang Zhang
Department of Electronic
Engineering, Tsinghua
University

wgzhang@tsinghua.edu.cn

classification stage, the classifier determines a segment-
by-segment decision.
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Figure 1. The audio classification framework.

In audio analysis and classification there are dozens of
features which can be used. Widely-used time-domain
features [5] include short-term energy [7], zero-crossing
rate [8], and entropy of energy [9]. Common frequency-
domain features include spectral centroid, spectral spread,
spectral entropy [10], spectral flux, spectral roll-off,
MFCCs, and chroma vector [11].

There is a lot of complementary information among these
features which can im-prove classification accuracy when
used together; however, there is also a lot of re-dundant
and even contradictory information which can decrease
performance. It is hard to judge which combination of
features is most likely to have a positive effect on classi-
fication. Furthermore, it is computationally infeasible to
select the optimal feature subset by exhaustive search.
Thus, it’s important to implement an effective feature se-
lection method for this task.

Most supervised feature selection methods are dependent
on labeled data. Unfortunately, it is difficult to obtain
sufficient labeled data for audio classification, while un-
labeled data is readily available. Semi-supervised feature
selection methods can take good use of both labeled and
unlabeled data, thus this approach is more practical.
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