
USING SIATECCOMPRESS
TO DISCOVER REPEATED THEMES AND SECTIONS

IN POLYPHONIC MUSIC

David Meredith
Aalborg University

dave@titanmusic.com

ABSTRACT

Three variants of the SIATECCOMPRESS algorithm were
submitted to the 2016 MIREX competition on Discovery
of Repeated Themes and Sections. The three variants were
those that performed best in terms of three-layer F1 score
(TLF1), three-layer precision (TLP) and three-layer recall
(TLR), respectively, when a large number of variants of
SIATECCOMPRESS, COSIATEC and Forth’s algorithm
were run on the polyphonic version of the JKU Patterns
Development Database (JKU-PDD). The variant optimised
for TLF1 achieved an average TLF1 score of 0.490 over
the five pieces in the database. The variant optimised for
TLP achieved an average TLP score of 0.561 over the JKU-
PDD. The variant optimised for TLR achieved an average
TLR score of 0.583 over the JKU-PDD. The three variants
have been implemented in Java.

1. INTRODUCTION

COSIATEC [8, 11–16, 18, 19], SIATECCOMPRESS [12–
16], and Forth’s algorithm [6, 7] are greedy point-set com-
pression algorithms that have been developed for analysing
music. All three algorithms are based on the SIA and
SIATEC algorithm described by Meredith, Lemström and
Wiggins [17]. Each algorithm takes a point-set represen-
tation of a musical piece as input and computes a com-
pact encoding of the piece in the form of a set of trans-
lational equivalence classes of maximal translatable pat-
terns. COSIATEC generates a strict partitioning of the
input dataset, whereas the sets of pattern occurrences com-
puted by SIATECCOMPRESS and Forth’s algorithm may
share points (i.e., notes).

All three algorithms are founded on the hypothesis that
the best ways of understanding a piece of music are those
that are represented by the shortest descriptions of the
piece. In other words, they are designed to explore the
notion that music analysis is effectively just music com-
pression.

In previous experiments [12, 15, 16], it was found
that, of the three algorithms, versions of SIATECCOM-

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
c© 2013 David Meredith.

PRESS performed best on the task of discovering repeated
themes and sections in both the JKU Patterns Development
Database (JKU-PDD) [2] and the test database used in the
2013 and 2014 MIREX competitions [3,4]. Three variants
of the SIATECCOMPRESS algorithm were therefore sub-
mitted to the 2016 competition, optimized for precision,
recall and F1 score, respectively.

2. USING POINT SETS TO REPRESENT MUSIC

The submitted algorithms assumed that the piece of mu-
sic to be analysed is represented in the form of a multi-
dimensional point set called a dataset, as described by
Meredith et al. [17]. Although these algorithms work with
datasets of any dimensionality, it will be assumed here
that each dataset is a set of two-dimensional points, 〈t, p〉,
where each point represents a single note or sequence of
tied notes whose onset time is t in tatums and whose mor-
phetic pitch [9, 10, 17] is p. If morphetic pitch information
is not available (e.g., because the data is in MIDI format),
then (at least for Western tonal music) it can be very reli-
ably computed from chromatic pitch (i.e., MIDI note num-
ber) using an algorithm such as PS13s1 [9, 10].

The three variants of SIATECCOMPRESS submitted to
the 2016 MIREX competition on Discovery of Repeated
Themes and Sections take Collins’ “lisp” format files as
input and use morphetic pitch representation.

3. MAXIMAL TRANSLATABLE PATTERNS

I shall use the term pattern to refer to any subset of a
dataset. Suppose D is a dataset and D′1, D

′
2 ⊆ D. The

two patterns, D′1, D
′
2, are said to be translationally equiv-

alent, denoted by D′1 ≡T D′2, if and only if there exists a
vector v, such that D′1 translated by v is equal to D′2. That
is,

D′1 ≡T D′2 ⇐⇒ (∃v | D′2 = D′1 + v) . (1)

Given a vector, v, then the maximal translatable pattern
(MTP) for v in the dataset, D, is defined and denoted as
follows:

MTP(v,D) = {p | p ∈ D ∧ p+ v ∈ D} (2)

where p + v is the point that results when one translates p
by the vector v. In other words, the MTP for a vector v in
a dataset D is the set of points in D that can be translated
by v to give other points that are also in D.

The notion that COSIATEC, SIATECCOMPRESS and
Forth’s algorithm can be used to discover the patterns in
a piece of music that an analyst or a listener finds impor-
tant, is founded upon the hypothesis that these patterns cor-
respond in some way to MTPs in the pitch-time dataset
representation of the piece. Meredith et al. [17] describe
an algorithm called SIA for discovering all the MTPs in a
dataset.

4. TRANSLATIONAL EQUIVALENCE CLASSES

When analysing a piece of music, we typically want to find
all the occurrences of an interesting pattern, not just one
occurrence. Given a pattern, D′, in a dataset, D, the trans-
lational equivalence class (TEC) of D′ in D is defined and
denoted as follows:

TEC(D′, D) = {Q | Q≡T P ∧Q ⊆ D} . (3)

We can also define the covered set of a TEC, T , denoted by
COV(T), to be the union of the occurrences in the TEC.
That is,

COV(T) =
⋃

D′∈T
D′ . (4)

Here we will be particularly concerned with MTP TECs—
that is, the translational equivalence classes of the maximal
translatable patterns in a dataset. Meredith et al. [17] de-
scribe an algorithm called SIATEC that uses SIA to find
all the MTPs and then goes on to find the TEC of each of
these MTPs (i.e., it finds all the (exact) occurrences of all
the MTPs).

A TEC is a set of patterns that are all translationally
equivalent to each other. Suppose a TEC, T , contains n
occurrences of a pattern containing m points. There are at
least two ways in which one can specify T . First, one can
list each of the n occurrences in T explicitly by listing all
of the m points in each occurrence. This requires one to
write down mn 2-dimensional points or 2mn integers. Al-
ternatively, one can explicitly list the m points in just one
of the n occurrences, D′, and then give the n−1 vectors re-
quired to map D′ onto the other occurrences. This requires
one to write down m 2-dimensional points and n − 1, 2-
dimensional vectors—that is, 2(m + n − 1) integers. If
n and m are both greater than one, then 2(m + n − 1) is
less than 2mn, implying that the second method of spec-
ifying a TEC gives us a compressed encoding of the TEC
(and therefore also of its covered set). Thus, in principle, if
a dataset contains repeated (i.e., translationally equivalent)
patterns, it may be possible to encode the dataset in a com-
pact manner by representing it as the union of the covered
sets of a set of TECs, where each TEC, T , is encoded as
an ordered pair, 〈D′, V 〉, where D′ is one occurrence in T
and V is the set of vectors that map D′ onto the other oc-
currences in T . When a TEC, T = 〈D′, V 〉, is represented
in this way, we call D′ the pattern and V the translator set
of the TEC.

COSIATEC(D)
1 D′ ← COPY(D)
2 T ∗ ← nil
3 T← 〈〉
4 while D′ 6= ∅
5 T ∗ ← GETBESTTEC(D′, D)
6 T← T⊕ 〈T ∗〉
7 D′ ← D′ \ COV(T ∗)
8 return T

Figure 1. The COSIATEC algorithm.

5. THE COSIATEC ALGORITHM

COSIATEC [8,18] (see Figure 1) is a greedy compression
algorithm, based on SIATEC, that takes a dataset, D, as
input and computes a compressed encoding of D in the
form of an ordered set of MTP TECs, T, such that

D =
⋃
T∈T

COV(T) (5)

and, for all T1, T2 ∈ T, T1 6= T2,

COV(T1) ∩ COV(T2) = ∅ . (6)

In other words, COSIATEC partitions a dataset D into the
covered sets of a set of MTP TECs. If each of these MTP
TECs is represented as a 〈pattern, translator set〉 pair, then
this description of the dataset as a set of TECs is typically
shorter than an in extenso description in which the points
in the dataset are simply listed explicitly.

COSIATEC begins by making a copy of the input
dataset which it stores in the variable D′ (line 1). Then,
on each iteration of the while loop (lines 4–7), the algo-
rithm finds the “best” MTP TEC in D′, T ∗, appends this
TEC to T and then removes the set of points covered by
T ∗ from D′. When D′ is empty, the algorithm terminates,
returning the list of MTP TECs, T. The sum of the num-
ber of translators and the number of points in this output
encoding is never more than the number of points in the
input dataset and can be much less than this if there are
many repeated patterns in the input dataset.

Given an input dataset, D, and what remains of a copy,
D′, of this dataset after the removal of zero or more MTP
TEC covered sets, the COSIATEC algorithm finds the
“best” MTP TEC in D′ (line 5), using the GETBESTTEC
algorithm shown in Figure 2. In lines 1–2 of GETBEST-
TEC, the SIA algorithm is used to find all the MTPs in the
dataset. The first step in this process is to compute a so-
called vector table, V, which is a two-dimensional array
of ordered triples,

V[i][j] = 〈pi − pj , pj , j〉 ,

where pi − pj is the vector from point pj to pi and pk =
D′[k], where D′ is an ordered set that only contains every
element in D′, sorted into lexicographical order.

Having computed the vector table, V, the MTPs are
found by sorting the triples in V, lexicographically by their
vectors (i.e., their first elements), and then scanning this

GETBESTTEC(D′, D)
1 V← COMPUTEVECTORTABLE(D′)
2 MCPs← COMPUTEMTPCISPAIRS(V)
3 mcp ← nil
4 T ∗ ← nil
5 for i← 0 to |MCPs| − 1
6 mcp ←MCPs[i]
7 T ← GETTECFORMTP(mcp,V, D′)
8 T ′ ← GETCONJUGATETEC(T)
9 T ← REMOVEREDUNDANTTRANSLATORS(T)
10 T ′ ← REMOVEREDUNDANTTRANSLATORS(T ′)
11 if T ∗ = nil ∨ ISBETTERTEC(T, T ∗)
12 T ∗ ← T
13 if ISBETTERTEC(T ′, T ∗)
14 T ∗ ← T ′

15 return T ∗

Figure 2. The GETBESTTEC algorithm.

COMPUTEMTPCISPAIRS(V)
1 W← SORTBYVECTOR(V)
2 MTPs← 〈〉
3 CISs← 〈〉
4 v ←W[0][0]
5 mtp← 〈W[0][1]〉
6 cis← 〈W[0][2]〉
7 for i← 1 to |W| − 1
8 vpi←W[i]
9 if vpi[0] = v
10 mtp←mtp⊕ 〈vpi[1]〉
11 cis← cis⊕ 〈vpi[2]〉
12 else
13 MTPs←MTPs⊕ 〈mtp〉
14 CISs← CISs⊕ 〈cis〉
15 mtp← 〈vpi[1]〉
16 cis← 〈vpi[2]〉
17 v ← vpi[0]
18 MTPs←MTPs⊕ 〈mtp〉
19 CISs← CISs⊕ 〈cis〉
20 MCPs← 〈〉
21 for i← 0 to |MTPs| − 1
22 MCPs←MCPs⊕ 〈〈MTPs[i],CISs[i]〉〉
23 return MCPs

Figure 3. The COMPUTEMTPCISPAIRS algorithm.

sorted list once: each MTP is then equal to the points as-
sociated with a run of consecutive triples with the same
vector in this sorted list. This is accomplished in line 2 of
GETBESTTEC using the COMPUTEMTPCISPAIRS algo-
rithm, which is shown in Figure 3.

The COMPUTEMTPCISPAIRS algorithm (Figure 3) first
sorts the triples in the vector table, V, into increasing
lexicographical order by their vectors. The resulting or-
dered set of triples is stored in the variable W (see line 1).
In lines 2–19 of this algorithm, two lists are constructed,
MTPs and CISs. MTPs contains all the MTPs in the
dataset, each MTP being represented as an ordered set of
points in lexicographical order. CISs contains, for each
MTP, a list of the indices of the columns in the vector ta-
ble corresponding to the points in the MTP. In lines 20–
22 of COMPUTEMTPCISPAIRS, a list of 〈mtp, cis〉 pairs
is constructed by combining corresponding elements in
MTPs and CISs.

In lines 5–14 of GETBESTTEC, the for loop iterates
over this ordered set of 〈mtp, cis〉 pairs computed by

Figure 4. A pair of conjugate TECs. Note that the pattern
of blue points in the right-hand figure consists of the upper
left point of each pattern in the TEC in the left-hand figure.

COMPUTEMTPCISPAIRS. For each pair, the TEC of the
MTP is computed in line 7 using the technique employed
in the SIATEC algorithm [17]. Then, in line 8, the con-
jugate TEC [1] is computed for each MTP TEC found in
line 7. The concept of a conjugate TEC is illustrated in
Figure 4. Given a TEC, T = 〈D′, V 〉, the conjugate of T
is denoted and defined as follows:

GETCONJUGATETEC(T) = 〈D′′, V ′〉 (7)

where, if p0 is the lexicographically first point in D′,

D′′ = {p0} ∪ {p0 + v | v ∈ V } , (8)

and
V ′ = {p− p0 | p ∈ D′} \ {〈0, 0〉} . (9)

Given a pair of conjugate TECs, one may be “better” than
the other (e.g., because its pattern might be more compact).

In lines 9 and 10 of GETBESTTEC, redundant trans-
lators are removed from both the TEC, T , and its conju-
gate using the REMOVEREDUNDANTTRANSLATORS al-
gorithm. A translator is defined to be redundant if it can be
removed from the translator set of a TEC without chang-
ing the covered set of the TEC. Ideally, in order to get the
most compact description of the covered set of a TEC, one
would want to remove as many redundant translators as
possible. However, in general, finding the smallest subset
of the translator set of a TEC that is sufficient to generate
the TEC’s covered set is an NP-hard problem. In the imple-
mentation of COSIATEC submitted to the MIREX 2013
competition, a greedy approximation algorithm is used to
remove as many redundant translators as possible from a
TEC within a reasonable running time.

Finally, in lines 11–14 of GETBESTTEC, each MTP
TEC and its conjugate are compared with the “best” TEC
so far and replace it if they are deemed superior to it by the
ISBETTERTEC function, defined in Figure 5. This func-
tion takes two TECs as its arguments and returns true if
the first is “better than” the second. In lines 1–2 of IS-
BETTERTEC, the compression ratio of the two TECs are
compared. If P(T) and V(T) are defined to return the pat-
tern and translator set of a TEC, T , respectively, then the
compression ratio of a TEC is defined as follows:

CR(T) =
|COV(T)|

|P(T)|+ |V(T)| − 1
. (10)

ISBETTERTEC(T1, T2)
1 if CR(T1) > CR(T2)
2 return true
3 if COMPACTNESS(T1) > COMPACTNESS(T2)
4 return true
5 if |COV(T1)| > |COV(T2)|
6 return true
7 if PATTERNSIZE(T1) > PATTERNSIZE(T2)
8 return true
9 if PATTERNWIDTH(T1) < PATTERNWIDTH(T2)
10 return true
11 if PATTERNAREA(T1) < PATTERNAREA(T2)
12 return true
13 return false

Figure 5. The ISBETTERTEC function.

If the two TECs to be compared have the same com-
pression ratio, then they are compared for bounding-box
compactness (lines 3–4 of ISBETTERTEC) [17]. The
bounding-box compactness of a TEC is the number of
points in the TEC’s pattern divided by the number of
dataset points in the bounding box of this pattern. If the
two TECs have the same compression ratio and compact-
ness, the TEC with largest covered set is considered supe-
rior (lines 5–6). If the two covered sets are also the same
size, then the TEC with the larger pattern is considered su-
perior (lines 7–8). If the patterns are also the same size,
then the TEC with the pattern that has the shorter temporal
duration is considered superior (lines 9–10). Finally, if the
two TECs also have the same temporal duration, then the
TEC with the pattern whose bounding box has the smaller
area is considered superior (lines 11–12).

6. THE SIATECCOMPRESS ALGORITHM

COSIATEC runs SIATEC on each iteration of its while
loop. Since SIATEC has worst case running time O(n3)
where n is the number of points in the input dataset, run-
ning COSIATEC on large datasets can be time-consuming
(see Table ?? for some example running times). On the
other hand, because COSIATEC strictly partitions the
dataset into non-overlapping MTP TEC covered sets, it
tends to achieve high compression ratios for many point-
set representations of musical pieces (typically between 2
and 4 for a piece of classical or baroque music).

Like COSIATEC, the SIATECCOMPRESS algorithm
shown in Figure 6 is a greedy compression algorithm based
on SIATEC that computes an encoding of a dataset in the
form of a union of TECs. SIATECCOMPRESS closely re-
sembles the algorithm described by Forth [6,7], but is sim-
pler and non-parametric. Like Forth’s algorithm, but un-
like COSIATEC, SIATECCOMPRESS runs SIATEC only
once to get a list of TECs in decreasing order of quality
(as defined by the ISBETTERTEC function in Figure 5).
It then works its way down this list, selecting TECs to in-
clude in the encoding, until the input dataset is covered.
SIATECCOMPRESS does not generally produce as com-
pact an encoding as COSIATEC, since the TECs in its
output may share points. However, it is faster than COSI-
ATEC and can therefore be used practically on much

SIATECCOMPRESS(D)
1 V← COMPUTEVECTORTABLE(D)
2 MCPs← COMPUTEMTPCISPAIRS(V)
3 MCPs← REMOVETRANEQUIVMTPS(MCPs)
4 T← COMPUTETECS(D,V,MCPs)
5 T← ADDCONJUGATETECS(T)
6 T← REMOVEREDUNDANTTRANSLATORS(T)
7 T← SORTTECSBYQUALITY(T)
8 return COMPUTEENCODING(D,T)

Figure 6. The SIATECCOMPRESS algorithm.

COMPUTEENCODING(D,T)
1 D′ ← ∅
2 E← 〈〉
3 for i← 0 to |T| − 1
4 T ← T[i]
5 S ← COV(T)
6 if |S \D′| > |P(T)|+ |V(T)| − 1
7 E← E⊕ 〈T 〉
8 D′ ← D′ ∪ S
9 if |D′| = |D|
10 break
11 R← D \D′
12 if |R| > 0
13 E← E⊕ 〈ASTEC(R)〉
14 return E

Figure 7. The COMPUTEENCODING algorithm.

larger datasets.
The first steps in SIATECCOMPRESS are to com-

pute a vector table and compute MTPs using the SIA al-
gorithm, implemented in COMPUTEVECTORTABLE and
COMPUTEMTPCISPAIRS, as in the first two lines of
GETBESTTEC (see Figure 2). The next step (line 3 in
Figure 6) is to remove MTPs from the list, MCPs, that
are translationally equivalent to MTPs that occur earlier in
this list. This eliminates the possibility of the same TEC
being computed more than once in line 4. In line 5, the
conjugate of each TEC found in line 4 is also added to the
list of candidate TECs, T. In line 6, redundant translators
are removed from the translator set of each TEC in T and,
in line 7, the resulting list of candidate TECs is sorted into
decreasing order of quality using the ISBETTERTEC com-
parator function. This ordered set of TECs is then given to
the COMPUTEENCODING function (Figure 7), which com-
putes a compact encoding of the input dataset.

6.1 Forth’s algorithm

Forth [6, 7] presents an algorithm, that, like COSIATEC,
computes a set of TECs that collectively cover the input
dataset. However, unlike COSIATEC, Forth’s algorithm
runs SIATEC only once and the covers it generates are
not, in general, strict partitions—in the output of Forth’s
algorithm, the TECs may share covered points and, collec-
tively, may not completely cover the input dataset.

The first step in Forth’s algorithm is to run SIATEC on
the input dataset, D. This generates a sequence of MTP
TECs, T = 〈T1, T2, . . . Tn〉. The algorithm then com-
putes the covered set, Ci = COV(Ti), for each TEC,

Ti, in T, to produce a sequence of TEC covered sets,
C = 〈C1, C2, . . . Cn〉. It then assigns a weight, Wi,
to each covered set, Ci, to produce the sequence, W =
〈W1,W2, . . .Wn〉. Wi is intended to measure the “struc-
tural salience” [6, p. 41] of the patterns in the TEC, Ti, and
it is defined as follows:

Wi = w′cr,i · w′compV,i , (11)

where w′cr,i is a normalized value representing the com-
pression ratio of Ti and w′compV,i is a normalized value rep-
resenting the within-voice segment compactness of the pat-
terns in Ti. Forth [6, p. 38] defines the compression ratio
of a TEC in the same way as Meredith et al. [18].

The within-voice segment compactness of a pattern, as
used in Forth’s algorithm, is typically approximately equal
to its bounding-box compactness (as used in COSIATEC).
However, an advantage of bounding-box compactness over
within-voice segment compactness is that the former does
not depend on information about voice structure being
present in the input data—that is, bounding-box compact-
ness does not require the musical surface to have already
been parsed into unambiguous voices. This avoids the need
for selecting one, unambiguous voice structure interpreta-
tion for a piece in cases where the voice structure is actu-
ally ambiguous (as it often is, for example, in keyboard
music). Nevertheless, if information about voice struc-
ture is available, one might well hypothesize that within-
voice segment compactness would give better results than
bounding-box compactness (though the results reported in
section ?? do not support this hypothesis).

Having computed the sequence of weights, W, Forth’s
algorithm then attempts to select a subset of C that covers
the input dataset while maximising the weights, Wi, of the
TECs used in the cover. Forth’s algorithm takes D, C and
W as parameters, along with a numerical parameter, cmin.
The algorithm repeatedly selects the “best” remaining TEC
covered set, C∗, in C, adds this to the cover, S, and then
removes C∗ from C. A point set, P , is used to store the set
of points covered by the TEC covered sets selected so far.
In order for a TEC covered set to be added to the cover,
the number of new points that it covers, c, (i.e., that are not
already in P) must be at least cmin. The TEC covered set,
C∗, that is added on a particular iteration is then the one
for which c ·Wi is a maximum. If no TEC covered set is
selected on a particular iteration, then the algorithm termi-
nates, even if the dataset has not been completely covered.
The algorithm returns the cover, S, containing the “best”
TECs selected.

7. EVALUATION

Two experiments were carried out in order to select the
specific variants of the algorithms to be submitted to the
2016 MIREX competition. In the first experiment, 96 vari-
ants of each of the three basic algorithms (i.e., COSI-
ATEC, SIATECCOMPRESS and Forth’s algorithm) were
run on the polyphonic version of the JKU-PDD [2]. For
each of these three basic algorithms, the following param-
eter values were used:

1. compactness trawling [5] was either used or not
used;

2. SIA was either replaced with SIAR [1] or it was not;

3. redundant translators were either removed or not;

4. minimum permitted compactness of patterns was set
to either 0.5 or 0.9;

5. minimum pattern size was set to either 4 or 8;

6. the algorithms were run in either raw, bb or segment
mode.

The morphetic pitch representations of the polyphonic
versions of the JKU-PDD were used and the algorithms
were run on the “lisp” encodings of the pieces.

The performance of the 288 algorithm variants was
measured using using Tom Collins’ MATLAB implemen-
tation of the metrics defined in [3], bundled with the JKU
PDD. Particular attention was paid to the values of three-
layer precision, three-layer recall and three-layer F1 mea-
sure [15].

The algorithm variants that performed best in this ex-
periment in terms of three-layer F1 score were versions of
SIATECCOMPRESS with the following parameter values:

1. compactness trawling was not used;

2. SIAR was used in place of SIA;

3. redundant translators were not removed;

4. minimum pattern size was set to 4;

5. the algorithms were run in segment mode.

For these parameter values, the choice of minimum
compactness threshold made no difference to the F1 score.
With these parameter values, the three-layer F1 scores
achieved over the five pieces in the database were as fol-
lows:

• Bach: 0.27952

• Beethoven: 0.63336

• Chopin: 0.60895

• Gibbons: 0.36589

• Mozart: 0.5609

• Mean F1 score over all five pieces: 0.489724

Table 1 shows the values of three-layer precision for
the algorithms that performed best on average over the
JKU-PDD in terms of this measure. Note that the top
8 algorithms were versions of either Forth’s algorithm
or SIATECCOMPRESS, and that the parameter values in
these algorithms were as follows:

1. SIAR was used instead of SIA (indicated by “rsd”
in the algorithm name);

Table 1. Top-scoring algorithms in first experiment in terms of three-layer precision over the JKU-PDD.

2. minimum pattern size was set to 8 (indicated by
“min8” in the algorithm name);

3. the algorithms were run in segment mode (indicated
by “segmode” in the algorithm name.

Whether redundant translators were removed or not and
the choice of minimum compactness made no difference in
terms of precision.

The algorithm variants that performed best in this first
experiment in terms of three-layer recall were the versions
of SIATECCOMPRESS with the following parameter val-
ues:

1. compactness trawling was not used;

2. SIA was used instead of SIAR;

3. redundant translators were not removed;

4. minimum pattern size was set to 4;

5. segment mode was used.

For these algorithms, the minimum compactness setting
made no difference to the the precision.

This first experiment confirmed previous results that
showed that SIATECCOMPRESS appears to be the most
successful of the three basic algorithms on this task. A sec-
ond, more in-depth experiment was therefore carried out
to find the variants of SIATECCOMPRESS that perform
best on the JKU-PDD in terms of three-layer precision, re-
call and F1 score. In this second experiment, 72 variants
of SIATECCOMPRESS were run in segment mode on the
JKU-PDD, using the following parameter values:

1. either SIA or SIAR was used; if SIAR was used,
the r parameter was set to either 1 or 3;

2. redundant translators were either removed or not;

3. minimum compactness was set to either 0.25 or 0.5
(minimum compactness settings has made no differ-
ence to the results in the first experiment);

4. minimum pattern size was set to 4, 6 or 8;

5. the number of patterns generated by the algorithms
was either unlimited or limited to 10 patterns.

Tables 2 to 4 show, respectively, the three-layer F1,
precision and recall scores for those variants of SIATE-
CCOMPRESS tested that performed best in terms of these
measures.

The results in Table 2 indicate that SIATECCOMPRESS

performed best in terms of three-layer F1 score over the
JKU-PDD when

• SIAR was used with r set to 1;

• minimum pattern size was set to 4;

• the number of returned patterns was unlimited
(“top0”).

Removing redundant translators only very marginally
reduced performance. Minimum compactness threshold
made no difference to these results. The two best vari-
ants achieved a three-layer F1 score of 0.4897. The vari-
ant submitted to the MIREX competition as algorithm
MeredithTLF1MIREX2016.jar was therefore a version of
SIATECCOMPRESS with the following parameter values:

• SIAR used with r = 1;

• minimum compactness set to 0.25;

• minimum pattern size set to 4;

• number of patterns generated unlimited;

• segment mode used;

• redundant translators not removed;

• morphetic pitch representation used.

The results in Table 3 indicate that SIATECCOMPRESS

performed best in terms of three-layer precision over the
JKU-PDD when

• SIAR was used with r = 1;

• redundant translators were not removed;

• minimum pattern size was set to 8;

• the number of patterns returned was limited to 10.

Minimum compactness threshold made no difference to
these results. The two best variants achieved a three-layer
precision of 0.5614. The variant submitted to the MIREX
competition as algorithm MeredithTLPMIREX2016.jar

Table 2. Top-scoring variants of SIATECCOMPRESS in the second experiment in terms of three-layer F1 score over the
JKU-PDD.

Table 3. Top-scoring variants of SIATECCOMPRESS in the second experiment in terms of three-layer precision over the
JKU-PDD.

Table 4. Top-scoring variants of SIATECCOMPRESS in the second experiment in terms of three-layer recall over the
JKU-PDD.

was therefore a version of SIATECCOMPRESS with the
same parameter values as MeredithTLF1MIREX2016.jar,
except the minimum pattern size was increased to 8 and
the number of patterns generated was limited to 10.

The results in Table 4 indicate that SIATECCOMPRESS

performed best in terms of three-layer recall over the JKU-
PDD when

• SIA was used instead of SIAR;

• redundant translators were not removed;

• minimum pattern size was set to 4;

• the number of patterns generated was unlimited.

Minimum compactness threshold made no difference to
recall. The two best variants achieved a three-layer recall
value of 0.5831. The variant submitted to the MIREX com-
petition as algorithm MeredithTLRMIREX2016.jar was
therefore a version of SIATECCOMPRESS in segment
mode in which

• SIA was used instead of SIAR;

• redundant translators were not removed;

• minimum pattern size was set to 4;

• the number of patterns generated was unlimited;

• minimum compactness was set to 0.25.

8. REFERENCES

[1] Tom Collins. Improved methods for pattern discovery
in music, with applications in automated stylistic com-
position. PhD thesis, Faculty of Mathematics, Com-
puting and Technology, The Open University, Milton
Keynes, 2011.

[2] Tom Collins. JKU Patterns Development Database,
2013. Available at https://dl.dropbox.com/
u/11997856/JKU/JKUPDD-Aug2013.zip.

[3] Tom Collins. MIREX 2013 Competition: Discovery
of Repeated Themes and Sections, 2013. http://
tinyurl.com/o9227qg. Accessed on 5 January
2015.

[4] Tom Collins. MIREX 2014 Competition: Discov-
ery of Repeated Themes and Sections, 2014. http:
//tinyurl.com/krnqzn5. Accessed on 9 April
2015.

[5] Tom Collins, Jeremy Thurlow, Robin Laney, Alistair
Willis, and Paul H. Garthwaite. A comparative evalua-
tion of algorithms for discovering translational patterns
in baroque keyboard works. In Proceedings of the 11th
International Society for Music Information Retrieval
Conference (ISMIR 2010), Utrecht, The Netherlands,
9–13 August 2010, pages 3–8, 2010.

[6] James C. Forth. Cognitively-Motivated Geometric
Methods of Pattern Discovery and Models of Similar-
ity in Music. PhD thesis, Department of Computing,
Goldsmiths, University of London, 2012.

[7] Jamie Forth and Geraint A. Wiggins. An approach for
identifying salient repetition in multidimensional rep-
resentations of polyphonic music. In J. Chan, J. W.
Daykin, and M. S. Rahman, editors, London Algorith-
mics 2008: Theory and Practice, pages 44–58. College
Publications, London, 2009.

[8] David Meredith. Point-set algorithms for pattern dis-
covery and pattern matching in music. In Pro-
ceedings of the Dagstuhl Seminar on Content-
based Retrieval (No. 06171, 23–28 April, 2006),
Schloss Dagstuhl, Germany, 2006. Available on-
line at http://drops.dagstuhl.de/opus/
volltexte/2006/652.

[9] David Meredith. The ps13 pitch spelling algorithm.
Journal of New Music Research, 35(2):121–159, 2006.

[10] David Meredith. Computing Pitch Names in Tonal Mu-
sic: A Comparative Analysis of Pitch Spelling Algo-
rithms. PhD thesis, Faculty of Music, University of Ox-
ford, 2007.

[11] David Meredith. Analysis by compression: Au-
tomatic generation of compact geometric en-
codings of musical objects. In The Music En-
coding Conference (MEC 2013), 2013. http:
//www.titanmusic.com/papers/public/
MeredithMEC2013ProceedingsPaper.pdf.

[12] David Meredith. COSIATEC and SIATECCom-
press: Pattern discovery by geometric compres-
sion. In MIREX 2013 (Competition on Discov-
ery of Repeated Themes & Sections), 2013. Avail-
able online at http://www.titanmusic.com/
papers/public/MeredithMIREX2013.pdf.

[13] David Meredith. Compression-based geometric pattern
discovery in music. In Fourth International Workshop
on Cognitive Information Processing (CIP 2014), 26–
28 May 2014, Copenhagen, Denmark, 2014.

[14] David Meredith. Using point-set compression to clas-
sify folk songs. In Fourth International Workshop on
Folk Music Analysis (FMA 2014), 12–13 June 2014,
Bogazici University, Istanbul, Turkey, 2014.

[15] David Meredith. Music analysis and point-set
compression. Journal of New Music Research,
44(3):245–270, 2015. http://dx.doi.org/10.
1080/09298215.2015.1045003.

[16] David Meredith. Analysing music with point-set
compression algorithms. In David Meredith, editor,
Computational Music Analysis, pages 335–366.
Springer, 2016. http://link.springer.com/
chapter/10.1007/978-3-319-25931-4_
13.

[17] David Meredith, Kjell Lemström, and Geraint A. Wig-
gins. Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music.
Journal of New Music Research, 31(4):321–345, 2002.

[18] David Meredith, Kjell Lemström, and Geraint A.
Wiggins. Algorithms for discovering repeated pat-
terns in multidimensional representations of poly-
phonic music. In Cambridge Music Processing Col-
loquium, 2003. http://www.titanmusic.com/
papers/public/cmpc2003.pdf.

[19] David Meredith, Geraint A. Wiggins, and Kjell
Lemström. Method for pattern discovery. UK Patent
GB2379056, granted 29 September 2004. (Priorities:
GB0112551 23 May 2001; GB0200203 07 Jan 2002).
http://v3.espacenet.com/textdoc?DB=
EPODOC&IDX=EP1402400&QPN=EP1402400.
Draft available at http://www.titanmusic.
com/papers/public/patent2002c_for_
FP.pdf.

