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ABSTRACT

In this submission for MIREX 2016 I give an overview
of a method for using a convolutional neural network to
identify notes in music. Spectrograms were first gener-
ated from audio using a constant Q transform and possible
note onset times were detected. Regions of the spectro-
grams centered at these onset times were fed as input into
a convolutional neural network, which produced a vector
of probabilities for 88 notes. Filtering was performed on
these probabilities to obtain the final note predictions.

1. INTRODUCTION

Convolutional neural networks (CNNs) have been used for
many years to achieve state-of-the-art results in computer
vision. [1] Finding notes in a region of a spectrogram can
be viewed as an image detection problem with a few dif-
ferences. CNNs often to use a final softmax to pick the
most likely class (car, dog, etc.) for an input image among
a fixed number of competing classes. For polyphonic note
detection, it’s desirable to remove this layer to allow multi-
ple outputs to be active at once. Spectrograms are simpler
than most photographic images in the sense that spectro-
grams can be approximately composed of only a couple
basic structures: harmonics, which are narrow in frequency
and wide in time, and drums or other wideband features
that are narrow in time and wide in frequency. Unlike ob-
jects in photographs, notes in a spectrogram are never sub-
ject to rotation or distance-based scaling. Ignoring drums,
notes form the only object class a neural network needs
to learn to recognize to perform useful transcription. If
the spectrogram uses a logarithmic scale on the frequency
axis, all notes will have the same spacing between the 1st
and 2nd harmonics, the 2nd and 3rd, and so on. Notes
with different pitches become translated versions of the
same image with some variation in harmonic amplitudes.
Convolutions are ideal to handle this type of translation.
Weight sharing insures that any improvement in the ability
of the network to recognize one note improves its ability to
recognize notes at every other frequency.
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One of the ways in which note detection is uniquely
challenging is the way nearby harmonics interfere with
each other. In photographs, one object may be partially
hidden by another, but placing object 1 behind object 2
doesn’t cause object 2 to become distorted where they
overlap. One way to reduce this distortion is to dynam-
ically detect collisions during the spectrogram generation
and increase the Q-factor where they occur. A larger Q
factor comes at the cost of reduced amplitude information,
so a low Q is preferred by default.

Neural networks can be trained by providing examples
of inputs with the desired outputs and using backpropaga-
tion to iteratively update the weights of the network. The
weights are moved down the gradient of the error such that
the desired outputs become more likely. The more train-
ing data that is available, the larger and more accurate the
neural network can be. Fortunately, it’s easier to gener-
ate large quantities of labeled note data than it is to label
images. MIDI files are effectively pre-labeled data when
coupled with a good MIDI-to-WAV utility and large col-
lections of MIDI files are freely available. The CNN in
this submission used around 2.5 million labeled samples
auto-generated from a set of 3,000 MIDI files.

2. ALGORITHMS

Stereo spectrograms were generated for both channels of
audio using an approximately-constant Q factor that in-
creased as needed to reduce harmonic collisions. Ad-
ditional non-linear scaling was applied to make the am-
plitudes more closely match the log of raw audio ampli-
tudes and to add some normalization. The number of fre-
quency bins per note was chosen to be an integer so that
after a number of max-pooling and size reduction layers
there would be exactly one output neuron per note. The
stereo spectrograms were stacked in a 3-dimensional array,
analagous to color channels in an image.

Candidate note start times were detected by looking for
regions in the spectrogram where the amplitude of many
frequency bins increased in a short period of time. Rectan-
gular slices of the spectrogram centered on these time val-
ues were used as inputs to a CNN. The areas of the spec-
trogram before and after the detected onset time provide
additional context helpful in detecting notes.

The CNN'’s architecture was based on Microsoft’s
ResNet, which won the ILSVRC challenge in 2015 [2].
The forward skip connections speed up the training pro-



cess and allow the output to be composed of a series of ad-
ditions (residuals) on the input. This is an attractive choice
for note detection, because the output of the CNN gener-
ally looks like the input after subtracting off the 2nd and
above harmonics and possibly increasing the amplitude of
the fundamental frequencies. In contrast to ResNet, this
CNN made use of several pairs of long, thin convolutions
with alternating vertical and horizontal orientations. These
long, thin convolution pairs, an Mx1 followed by a 1xN,
helped efficiently integrate information from distant parts
of the spectrogram and may have helped resolve ambigu-
ities in fundamental frequencies by connecting many neu-
rons along the frequency axis. The final output layer was a
1x1 convolution with a single filter followed by a sigmoid
that resulted in an 88x1x1 array of note probabilities.

Additional filtering was applied on the output of the
CNN, which resulted in the removal of some of the lower
confidence notes (notes with greater than 0.5 probability
but less than some threshold). This filtering consisted of a
separate note detection algorithm, which used a more tradi-
tional approach of searching for peaks in the spectrogram,
forming tracks of sequential peaks, and ordering candidate
notes from most to least likely. The main idea behind this
secondary algorithm is that the strongest track at any in-
stant is very likely to be a low harmonic: a 1st, 2nd, or 3rd.
The likelihood of each of these possibilities can be ranked
using the scores generated by the CNN. The most likely
fundamental frequency is selected and all tracks at multi-
ples of this frequency are removed from consideration. The
process is then repeated until there are no more tracks with
strong amplitudes remaining. This algorithm produces a
second semi-independent set of notes based on strong am-
plitude tracks in the spectrogram and scores from the CNN.
To obtain the final set of notes at a given moment in time,
all of the high-confidence notes from the CNN were ac-
cepted, but all of the notes with lower confidences were
filtered out unless they also appeared in the second list of
track-based notes.

For simplicity, no attempt was made to accurately de-
termine note offsets. A note was assumed to end as soon
as the next note began.

3. EVALUATING PERFORMANCE

The CNN had an accuracy of 99.088% on the evaluation
split (data not used for training) at the note level after one
epoch of training. This was calculated by rounding each
output to 0 or 1 and measuring the fraction of all outputs
that matched the truth values. However, since the dataset
had an average of 3 notes and 85 non-notes per training
example, an unintelligent algorithm achieves 96.6% note
level accuracy by never detecting any notes. At the frame
level, classifying an entire frame as accurate if all 88 out-
puts match their truth values, the accuracy was just over
50%. The accuracy of the entire algorithm, which depends
on the onset time detection accuracy and the filtering of
the CNN’s output has not yet been determined, but will be
published in the MIREX 2016 results. The performance
on non-MIDI-based music has not been objectively mea-

sured, but in informal observations the accuracy seems to
be roughly comparable.

One potential area for improving this algorithm is to
use a recurrent neural network (RNN) to learn common se-
quences and combinations of notes and adjust note scores
based on these expectations. Some sequences and com-
binations of notes are statistically more likely than others
and this information could be used to resolve ambiguities.
An RNN may also be well-suited for formatting notes into
measures and generating sheet music that is easier for hu-
mans to read. Collections of sheet music in a standard for-
mat like MusicXML could be used to generate a training
data set for this type of RNN.
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