
LYRICS ALIGNMENT USING HMMS, POSTERIORGRAM-BASED DTW,
AND PHONEME-BASED LEVENSHTEIN ALIGNMENT

Anna Kruspe
Fraunhofer IDMT, Ilmenau, Germany

kpe@idmt.fhg.de

ABSTRACT

We present three approaches to lyrics-to-audio alignment
for MIREX.
Approach A is based on Hidden Markov Models trained
on the TIMIT speech data set, and uses the Hidden Mar-
kov Toolkit (HTK) and its included alignment algorithm.
Approaches B and C employ Deep Neural Networks (DNNs)
for phoneme recognition. These networks were trained on
a large amount of unaccompanied singing from the DAMP
karaoke data set. They are used to generate phoneme pos-
teriorgrams from the input audio.
For approach B, one-hot templates for the expected pho-
neme sequences are generated from the input lyrics data.
Both these templates and the posteriorgrams are input into
a Dynamic Time Warping (DTW) algorithm. This algo-
rithm then attempts to find the best alignment between the
posteriorgram and the binary template, which is then con-
verted back into timestamp information.
Approach C also uses the posteriorgrams as its input, but
then employs a mapping algorithm to produce plausible
phoneme strings from them. These phoneme strings are
then aligned with the expected sequence using a modified
Levenshtein alignment.

1. HMM-BASED ALIGNMENT

For our first approach, we used speech data for training
phoneme models. This data was taken from the commonly
used Timit data set [1]. Monophone Hidden Markov Mo-
dels (HMMs) were trained using the Hidden Markov Tool-
kit (HTK) [5]. Mel-Frequency Cepstral Coefficients (MFCC)
were employed as features.
Then, the alignment algorithm from HTK is used to align
the text lyrics to the audio. The employed dictionary is the
the CMU Pronouncing Dictionary 1 .

2. POSTERIORGRAM-BASED APPROACHES

Both other approaches are based on phoneme posterior-
grams. These are generated from the input audio by first

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
c© 2010 The Authors.

extracting MFCC features, and then running them through
a Deep Neural Network (DNN) for acoustic modeling.
This DNN was trained on 6000 recordings of full songs
performed by amateurs without accompaniment. These re-
cordings are from the DAMP corpus 2 [4]. Since the data
set does not contain phoneme annotations, these recordings
were first annotated by automatically aligning the expec-
ted phonemes using the HMM-based approach. The whole
process is described in [2].
An example of one of the generated posteriorgrams is shown
in figure 1a.

2.1 DTW-based alignment

The first approach based on the phoneme posteriorgrams
calculates a path between those and a binary template of
the expected phoneme sequence. In order to do this, the
input lyrics data is converted to phoneme sequences using
the CMU Pronouncing Dictionary. Then, a one-hot matrix
in the same formatting as the posteriorgram is generated
from those (but, of course, with no timing information).
An example of such a one-hot matrix is shown in figure
1b.
A similarity matrix between both matrices is then calcula-
ted using the cosine distance. Then, Dynamic Time War-
ping is performed on this matrix to obtain the cheapest
warping path. An example of this is shown in figure 1c.
Finally, we convert the result back into time frames.
This approach was presented in [3], where it was used to
calculate the distances between a posteriorgram and a large
set of lyrics templates in order to retrieve the most likely
one.

2.2 Levenshtein-based alignment

The second approach based on the posteriorgrams does not
operate on them directly, but rather attempts to convert
them into plausible phoneme strings first.
In order to do this, the posteriorgram is first smoothed
along the time axis using a short window. Then, the most
likely phoneme for each frame is picked, the phonemes are
grouped, and the durations and sum probabilities for each
phoneme are calculated.
This commonly results in a much too long and noisy pho-
neme sequence, caused by mistakes that the classifier ma-
kes, and idiosyncrasies of the singer (i.e. performing a
phoneme not exactly in the expected way, especially by

2 https://ccrma.stanford.edu/damp/



(a) Phoneme posteriorgram (b) Phoneme template (c) Similarity matrix with cheapest path
(blue)

Figure 1: Example of a DTW path calculation: Phoneme posteriorgrams are calculated for the audio recordings (a).
Phoneme templates are generated for the textual lyrics (b). Then, a similarity matrix is calculated using the cosine distance
between the two, and DTW is performed on it (c).

transitioning through multiple phonemes). We therefore
employ an algorithm that compresses this long sequence
into a shorter one by discarding unlikely phonemes, taking
into account the probabilities and the classifier’s known
confusions.
Ideally, this results in a phoneme sequence that is relatively
similar to the expected one. However, we set the parame-
ters in such a way that the sequence usually contains a few
superfluous phonemes rather than discarding too many.
Then, we perform Levenshtein alignment between this ge-
nerated phoneme sequence and the expected one. This al-
gorithm is modified to also take the classifier’s confusions
into account for substitutions and insertions.
This results in a mapping from the generated phoneme
string (containing time information) to the expected one,
which we then convert back into timestamps.

3. REFERENCES

[1] J. S. Garofolo et al. TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus. Technical report, Linguistic
Data Consortium, Philadelphia, 1993.

[2] A. M. Kruspe. Bootstrapping a system for phoneme re-
cognition and keyword spotting in unaccompanied sin-
ging. In 17th International Conference on Music Infor-
mation Retrieval (ISMIR), New York, NY, USA, 2016.

[3] A. M. Kruspe. Retrieval of textual song lyrics from
sung inputs. In INTERSPEECH, San Francisco, CA,
USA, 2017.

[4] J. C. Smith. Correlation analyses of encoded music
performance. PhD thesis, Stanford University, 2013.

[5] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valt-
chev, and P. Woodland. The HTK Book Version 3.4.
Cambridge University Press, 2006.


