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ABSTRACT

Recent directions in automatic speech recognition (ASR)
research have shown that applying deep learning models
from image recognition challenges in computer vision is
beneficial. As automatic music transcription (AMT) is su-
perficially similar to ASR, in the sense that methods often
rely on transforming spectrograms to symbolic sequences
of events (e.g. words or notes), deep learning should ben-
efit AMT as well. In this work, we outline an online poly-
phonic pitch detection system that streams audio to MIDI
by ConvLSTMs. Our system achieves state-of-the-art re-
sults on the 2007 MIREX multi-FO development set, with
an f-measure of 83% on the bassoon, clarinet, flute, horn
and oboe ensemble recording without requiring any musi-
cal language modelling or assumptions of instrument tim-
bre.

1. INTRODUCTION

Deep learning has dramatically improved the state-of-the-
art in speech recognition [20] and it seems likely there-
fore to be a promising framework for music information
retrieval (MIR) tasks like automatic music transcription
(AMT), as AMT shares many similarities with ASR in the
sense that methods often rely on estimating sequences of
events from input sequences with fixed sampling rates such
as spectrograms (Figure 2).

[17] showed that deep neural networks can learn to
transform spectrograms to piano rolls (Figure 1) with no
explicit assumptions about musical structure or instrument
timbre, and particularly convolutional layers seem benefi-
cial to avoid overfitting. [27] used skip-connected convo-
lutional networks as described in [13] to guess active fun-
damentals around predetermined onsets (and then joined
notes by always extending offsets to be performed as
legato) with an average onset-only f-measure of 83% on
the MIREX 2016 solo piano note tracking task.

However, as music is sequential it should be benefi-
cial to promote temporal dependencies in the model ar-
chitecture and previous studies have used recurrent neu-
ral networks (RNNs) to do so [5] with average onset-only
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Figure 1. Example of an output piano roll with MIDI notes
drawn over time frames.

f-measures of 92% for piano recordings. However, a prob-
lem with RNNs is that the recurrence is fully-connected
[26], meaning deeper networks will overfit, and essentially
memorize timbre and/or melodies as spatial structure is
discarded. To circumvent overfitting [5] used semitone fil-
terbanks, but we believe that distinguishing pitch in poly-
phonic signals requires a high frequency resolution such
that spectral peaks don’t overlap. Essentially the spectro-
gram has to be invertible for us to believe that a model gets
a fair shot at learning.

This work’s main goal is to propose a combination of
convolutional neural networks and recurrent neural net-
works to perform polyphonic pitch detection without re-
quiring musical language modelling or assumptions of in-
strument timbre. This approach is inspired by the nature of
human pitch perception, which occurs on a sensory level
and can be regarded fundamentally a psychoacustical phe-
nomenon

2. RELATED WORK

Many variants of combining convolutional neural networks
with recurrent neural networks have been tried [1, 7], of-
ten by stacking networks such that the output of a con-
volutional model is directly fed into a recurrent model,
and trained jointly. This is straightforward but still dis-
cards spatial structure in the recurrent part of the network.
Instead, [28] proposed replacing the recurrent connection
with convolutions (ConvLSTM), and applied a seq2seq



variant to precipitation nowcasting ! . ConvLSTMs were
later applied to spectrograms in ASR [29], although they
pool over time before the RNN as their output is only a
few symbols per sample (words in sentences) compared
to the output resolution of piano rolls (hundreds of frames
in order to put notes at accurate onsets). Despite need-
ing high time resolution, we choose to work with piano
rolls to avoid having an encoder and decoder, and to bene-
fit from forcing models to choose a MIDI note number re-
gardless of tuning and inharmonicity, although future work
will look into attention seq2seq models where the output is
a list of pitch events instead of piano rolls that needs to be
peak picked from.

Aditionally, [29] used rectified linear units (ReLUs)
[23] and batch normalization [16] which means they might
have been hindered by trouble described in [9]. They set-
tled on only normalizing input connections and not the re-
currence, as proposed by [1]. For seq2seq this might not
pose a problem, but for polyphonic pitch detection it’s im-
portant to normalize feature maps over time because the
output is essentially a direct translation of the input with a
recoloring of the spectrogram into a binary piano roll.

3. PROBLEM FORMULATION

MIREX makes a distinction between estimating active
fundamental frequencies with fixed sampling rate, called
“framewise evaluation”, and estimating note events with
determined start and stop times, called “note tracking”.
Both tasks are evaluated separately. In this submission
we’re concerned with determining note events on the MIDI
scale, instead of tracking pitch contours, although the lat-
ter will be investigated in future work for vibrato tracking,
note-level instrument recognition and overlapping poly-
phonicity in ensemble recordings (not representable in pi-
ano rolls).

For both note tracking and framewise multi-f0 estima-
tion, two things make the problem hard:

1. When multiple notes are played together all tones
are mixed together in the same audio signal, so there
is more noise and it can be hard to distinguish fun-
damentals from partials, particularly when partials
overlap to create false fundamentals.

2. Human perception of pitch is complicated. Pitch of-
ten corresponds to the fundamental frequency of a
sound wave, or the presence of a harmonic series,
but not always. Timbre is also important for pitch
perception [24].

In other words, for AMT it can be better to have a pitch de-
tector that adds non-existing frequencies, because humans
generally perceive pitch categorically as stable note events,
e.g. we hear notes in melodies and unconsciously modify
the sound to fit musical expectations.

' Loosely speaking, precipitation nowcasting is the problem of pre-
dicting if it will rain from satelite images.

Input spectrogram
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Figure 2. Example of an input spectrogram where the au-
dio has been constant-Q transformed. Note that only log-
scaled power is shown as predicting phase is still an open
question in MIR research.

4. METHOD
4.1 Preprocessing

We use the real-time variant of a non-stationary Gabor
transform where Q is constant called sliCQ [15] (Figure 2),
but base our implementation on the time-domain imple-
mentation of the constant-Q transform (CQT) in [22]. The
reasoning for relying on CQT is that it promotes pitch in-
variance compared to an ordinary short-time Fourier trans-
form (STFT) [3], which is important for convolutional neu-
ral networks that share weights over the frequency axis. As
the presence of partials is also important for pitch percep-
tion we stack multiple spectrograms in the depth dimen-
sion as in [4], although we only use harmonics 1, 2, 3 and
4. All spectrograms are log-scaled power spectrograms so
convolution kernels can suppress noise as well as detecting
harmonics (which are often a lot louder).

4.2 Model

The model is a deep neural network that transforms spec-
trograms (Figure 2) to piano rolls (Figure 1). We treat the
occurrence of a new note onset as orthogonal to the pres-
ence of pitch, so we have two separate output channels, one
for articulation and one for sustain (Section 4.3). The sus-
tain channel is zero everywhere except during note events
where it is set to ones (i.e. a typical piano roll representa-
tion). The articulation channel has the additional constraint
that it is only one at the start of a note event (i.e. the first-
order derivative of the sustain channel, without negative
values).

The network performs a succession of convolution and
average pooling operations in frequency to remove inhar-
monicity and timbre. The following recurrent layers have
fully-connected matrix multiplies replaced with convolu-
tions to preserve spatial structure in each feature map. We
then upsample over time and apply additional convolu-
tions to account for spectrogram frame overlap. Scaled
exponential linear units are used as activation functions



and scaled hyperbolic tangents are used in the recurrence
[8,19]. Layer normalization [2] is used over time, which
unlike [9] has the benefit of not requiring too many param-
eters. As gating we use long short-term memory cells [14].
We have also experimented with exchanging the ConvL-
STM with a ConvGRU. The GRU [6] has been shown
in [12] to work as effectively as the LSTM [14] but it is
our belief that uncoupled forget gates are important for
mapping spectrograms to piano rolls as songs consist of
different sections that can change suddenly, so we keep all
LSTM gates with uncoupled forget gates [10], and also add
peepholes [11] for the same reason. Skip-connections [13]
are added around each recurrent, pooling and upsampling
layer to encourage later layers to make adjustments early in
the training, and were preferred over highway networks be-
cause gradient flow is improved without extra parameters.
We also believe that the residual style is particularly suited
for suppressing overtones. The final layer is a network-
in-network (i.e. 1x1 convolution) with sigmoid outputs as
in [17,27].

Training was done with Adam [18] and truncated back-
propagation through time with RNN state passthrough
across minibatches. Parameters were initialized with or-
thogonal initialization [25].

4.3 Postprocessing

Finally, we peak pick the two-channel activation matrix to
convert the framewise piano roll to a list of note events.
Per note, we step through each time frame and place an
onset at positions where the articulation channel is above a
set threshold, and then include all frames onward until the
sustain channel is under another fixed threshold, at which
point we output an offset. If a new articulation is found
during an active note event we simply fragment it by out-
putting additional offsets and onsets.

5. RESULTS
To be announced as MIREX 2017 is reported.

6. CONCLUSIONS AND FUTURE WORK

Our polyphonic pitch detection system gets state-of-the-
art results on the 2007 MIREX multi-FO development set,
with an f-measure of 83% on the bassoon, clarinet, flute,
horn and oboe ensemble recording without requiring any
musical language modelling or assumptions of instrument
timbre.

A minor weakness of our approach is that if we want
to extend our method with vibrato detection or ADSR en-
velopes, we would need to produce such annotations first.
Therefore, for future work we are looking into comple-
menting the deep learning approach with traditional sig-
nal processing techniques such as partial tracking [21] al-
though we strongly believe in a data-driven, end-to-end ap-
proach that avoids hard-coded heuristics.

Still, the primary weakness of our approach is the rigid-
ity of piano rolls. There’s no natural support for same-
note polyphonicity and piano rolls contain a lot of redun-

dancy. If we were able to supplant them with note events
directly (e.g. seq2seq) that would go a long way [29] but
it is not straightforward for AMT as there are invariances
not covered in an events list because of the polyphonicity.
For example, it shouldn’t matter which order simultaneous
note onsets are listed in (e.g. a chord). Data augmentation
to represent invariances should be tried, but might inflate
training times. Ultimately, we believe the major bottleneck
for further progress is the piano roll representation.
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