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ABSTRACT 

This extended abstract presents two new algorithms for au-
tomatic chord estimation. Both of them follows a Chor-
dino-like approach as a framework, but a new statistical 
model, the random forest model, was introduced. In the 
second submission, we suggest a new way to perform joint 
estimation of beat positions and chord sequences, aiming 
to replace the traditional beat-aligned chord estimation 
methods.  

 

1. INTRODUCTION 

We submitted two systems. In the first system, we intro-
duce the random forest model to the automatic chord esti-
mation task. Instead of mapping the chord types into 
smaller vocabulary, we perform training on a rich chord 
classes directly. After that, the HMM decoder is used for 
smoothing purpose. 

In the second system, we introduce the beat positions to 
limit chord transitions. To prevent the advert effect when 
the beat-tracking algorithm outputs wrong annotations, we 
adopted a new CRF model to estimate beat positions and 
chord sequences jointly. Beats and chords are able to cor-
rect each other in the extracting process. 

 

2. SUBMISSONS 

2.1 RF-HMM Estimator 

A random forest model is a collection of decision trees. A 
single decision tree functions similar to the one in figure 2. 
In a random forest, each decision tree is probabilistic, 
trained separately by a randomized subset of training sam-
ples and features. A single decision tree may not be accu-
rate, so multiple trees are used to form a random forest for 
better estimation results.  
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Figure 1. Overview of the submitted systems
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Figure 2. An (oversimplified) example of a decision tree 

2.1.1 Preprocess And Feature Extraction 

To process an audio file, the HPSS (Harmonic Percussive 
Source Separation) is performed first. Then we use 
NNLS-Chroma [1] to get the features. Although the 
NNLS-Chroma itself has the ability to reduce the influ-
ence of percussion components, an HPSS will make it 
work better in general. 

2.1.2 Chord Sequence Decoding 

A trained random forest model is used to estimate the 
emission strength of each chord label in each frame, form-
ing a chordogram 𝐇, where 𝐻։[𝑐] represents for the emis-
sion possibility for chord 𝑐 at ݊-th frame. 

Then an HMM is used for decoding chord sequence. It’s 
for smoothing propose only, similar to the one used by 
Chordino. 
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2.1.3 Large Chord Vocabulary And Class Reweighting  

A chord vocabulary is the collection of different chords 
before or after chord mapping is performed. Most estima-
tors working on the MajMin task tend to categorize chords 
into 25 classes (12 major, 12 minor and 1 no-chord). How-
ever, as errors and unbalanced subclasses (e.g. inverted 
chord subclasses) present in divided categories, the result 
is not always satisfactory. We adopted a different solution 
here: we regard different chord tags as distinct classes and 
no chord simplification is performed on complex chord 
types. Then the chord types with highest frequencies are 
reserved, where rare chord types are ignored and will be 
removed from the training set. 

Within a certain chord type, the frequency of different 
chord roots varies. To solve this problem, a full shift of 
Chroma vector is performed to expand the training set. Af-
ter expansion, all chord roots are on an equal footing. 

As a response to the unbalance between chord types, a 
prior factor is attached to each type, and training samples 
are reweighted when building the random forest. More 
specifically, if the chord class 𝑄ք has a prior factor of 𝑃ք, 
and 𝑁ք  samples belong to the class, then the sample 
weights 𝑊ք are calculated as: 

𝑊ք =

⎩

⎨


⎧𝑃ք

𝑁ք

  if 𝑄ք is noϺchord

𝑃ք

12𝑁ք

        otherwise

 

2.2 The Beat-Chord Estimator 

The relationship between chord change points and beat 
positions is commonly known, as chords tend to keep 
same during the beat period. In traditional beat-aligned 
chord estimators, the beat-tracking algorithm is performed 
first. The transition of chords is limited to the beat points, 
or they are readjusted during the post-processing. How-
ever, beat-tracking algorithms are not so reliable at the 
state of the art, leading to an advert effect on chord decod-
ing sometimes. In this submission, we suggest a new way 
to extract beat positions and chord sequences at the same 
time using a CRF (Conditional Random Field) model, 
where beats and chords can correct each other during the 
joint estimation.  

2.2.1 Model Details 

The CRF model was mostly based on [2], and new hidden 
variables 𝐂 (represent for the chord sequence) and new 
observation features 𝐇 (represent for the chordogram) are 
introduced, as shown in figure 2. 

And we use a Markovian form of CRF as in the original 
paper:  

𝑝(𝐘|𝐗) =
1

𝑍(𝐗)
Φ(𝑌φ, 𝐗) ః Ψ(𝑌։, 𝑌։−φ)

կ

։=ϵ

Φ(𝑌։, 𝐗) 

The observation potentials Φ(𝑌։, 𝐗) can be factorized 
into three terms: 
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Figure 3. Graphical representation of the CRF model 

 

Φ(𝑌։, 𝐗) = Φյ (𝑌։, 𝐺։)Φե(𝑌։, 𝐒)Φդ(𝑌։, 𝐻։) 
and 

  Φյ (𝑌։, 𝐺։) = 𝐺։[𝑇։]        

Φե(𝑌։, 𝐒) = 𝐷(𝑇։, 𝐷։, 𝐒) = S[𝑛 − 𝐷։ + 1] ∗ ΠյՓ
[𝑛] 

 Φդ(𝑌։, 𝐻։) = 𝐻։[𝐶։]ᇁՈ  

where 𝛾վ > 0 is the chord emission weight. A large 𝛾վ in-
dicates more confidence of chords information than beats 
information, and vice versa. 

We made some slight changes to the convolution kernel 
Πյ [𝑛] in the second term than the original paper to make 
it less likely to sink into a wrong phase, and easier to cal-
culate: 

Πյ [𝑛] = 𝛿[𝑛] + 𝛿[𝑛 + 𝑇 ] + 𝛿[𝑛 − 𝑇 ]

+ 1.5𝛾փ(𝛿[𝑛 + 𝑇/2] + 𝛿[𝑛 − 𝑇/2])

+ 0.75𝛾(𝛿[𝑛 + 𝑇/4] + 𝛿[𝑛 + 3𝑇/4]

+ 𝛿[𝑛 − 𝑇/4] + 𝛿[𝑛 − 3𝑇/4]) 
where 𝛾փ is the half-beat weight and 𝛾 is the quarter-beat 

weight, and 𝛿[𝑛] denotes the discrete impulse function. 

The transition potentials  Ψ(𝑌։, 𝑌։−φ) , also, follows 
closely to the original paper, with the transition constraint 
of chord added: 

Ψ(𝑌։, 𝑌։−φ)

= 
ℎ֏(𝑇։−φ, 𝑇։)𝑐֏(𝐶։−φ, 𝐶։)  if 𝐷։−φ = 𝑇։−φ and 𝐷։ = 1

1          if 𝐷։ = 𝐷։−φ and 𝑇։ = 𝑇։−φ and 𝐶։ = 𝐶։−φ

0                                                         otherwise

  

where ℎ֏(𝑇։−φ, 𝑇։)   and 𝑐֏(𝐶։−φ, 𝐶։) are the tempo 
transitions penalty term and chord transitions penalty term 
respectively. The first term complies with: 

ℎ֏(𝑇։−φ, 𝑇։) =

⎩

⎨


⎧

expভ−𝛾֏ ઊlog
𝑇։−φ

𝑇։

ઊ
ϵ

ম if 
𝑇։−φ

𝑇։

< 2

exp(−𝛾֏|log 2|ϵ)         if 
𝑇։−φ

𝑇։

> 2

 

To get the optimal path of the hidden variables 𝐗, the 
Viterbi algorithm is used. However, the naïve implemen-
tation of Viterbi algorithm has a time complexity of 



  

 

Θ(𝑁𝐶ϵ𝑇 ϯ) and a space complexity of Θ(𝑁𝐶𝑇 ϵ), where 
𝑁  is the total frame number, 𝐶  is the size of the chord vo-
cabulary, and 

𝑇 = max 𝑇։ − min 𝑇։                                         

=
60 ∙ SR

win_shift ∙ min_BPM
−

60 ∙ SR

win_shift ∙ max_BPM
 

The complexity is pretty unacceptable when the chord 
vocabulary is large. So we will briefly discuss some opti-
mization in implementation here. 

2.2.2 Algorithm Optimization 

Let 𝛼։(𝑌։) = 𝛼։(𝑇։, 𝐷։, 𝐶։) denotes the forward vari-
able in Viterbi algorithm. In implementation, the parame-
ter 𝐷։ can be wiped out by only storing hidden states with 
𝐷։ = 1. We define 𝑔(𝑛, 𝑡, 𝑐) ∶= log 𝛼։(𝑡, 1, 𝑐) as the sub-
state in a dynamic programming problem, and the transi-
tion formula can be rewritten as following: 

𝑔(𝑛, 𝑡, 𝑐) = max
֏Ӵվ

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) + log ℎ֏(𝑡
, 𝑡) + log ℎվ(𝑐

, 𝑐)

+ ం [log 𝐺ք[𝑡
] + log 𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)

։−φ

ք=։−֏

+ 𝛾վ log𝐻ք[𝑐
]] 

            = max
֏Ӵվ

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) − 𝛾֏ min{(log 𝑡′ − log 𝑡)ϵ, logϵ 2}

+ (log ℎվ(𝑐
, 𝑐) + 𝛾վ ం log𝐻ք[𝑐

]
։−φ

ք=։−֏

)

+ ం [log 𝐺ք[𝑡
]

։−φ

ք=։−֏

+ log𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)] 

As we can pre-calculate the prefix sum of two sigma 
terms respectively, both terms can be calculated in Θ(1) 
(e.g. if we define 𝐻𝑠[𝑛, 𝑐] ∶= ∑ log 𝐻𝑖[𝑐]

𝑛

𝑖=0
, then we can get 

∑ log 𝐻ք[𝑐
]։−φ

ք=։−֏
= 𝐻֎[𝑛 − 1, 𝑐] − 𝐻֎[𝑛 − 𝑡 − 1, 𝑐]), so the to-

tal time complexity is reduced to Θ(𝑁𝐶ϵ𝑇 ϵ). 

Next, if we assume that for any different chord, transi-
tion penalty 𝑐֏(𝑐

, 𝑐) is always a constant number 𝛾տ (i.e. 
𝑐֏(𝑐

, 𝑐) = 𝛾տ  ∀𝑐 ≠ 𝑐), then it is not necessary to enu-
merate the 𝑐. Define and pre-calculate 

𝑏𝑒𝑠𝑡_𝑐(𝑛, 𝑡) ∶= max
վ

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) + log 𝛾տ +𝛾վ ం log 𝐻ք[𝑐]
։−φ

ք=։−֏

 

Then, 𝑔(𝑛, 𝑡, 𝑐) is the maximum of the following two 
cases: 

𝑔տքցց(𝑛, 𝑡, 𝑐) ∶= max
֏

𝑏𝑒𝑠𝑡_𝑐(𝑛, 𝑡) − 𝛾֏ min{(log 𝑡 − log 𝑡)ϵ, logϵ 2}

+ ం [log𝐺ք[𝑡
]

։−φ

ք=։−֏

+ log𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)] 

𝑔֎ռֈր(𝑛, 𝑡, 𝑐) ∶= max
֏

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) − 𝛾֏ min{(log 𝑡′ − log 𝑡)ϵ, logϵ 2}

+ (log ℎվ(𝑐, 𝑐) + 𝛾վ ం log 𝐻ք[𝑐]
։−φ

ք=։−֏

)

+ ం [log𝐺ք[𝑡
]

։−φ

ք=։−֏

+ log𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)] 

      𝑔(𝑛, 𝑡, 𝑐) = max{𝑔տքցց(𝑛, 𝑡, 𝑐), 𝑔֎ռֈր(𝑛, 𝑡, 𝑐)} 

This is the version that the submission implemented. It 
has a time complexity of Θ(𝑁𝐶𝑇 ϵ) and a space complex-
ity of Θ(𝑁𝐶𝑇). However, the time complexity can be fur-
ther optimized to Θ(𝑁𝐶𝑇 ) due to the fact that log is a mo-
notonous function and log ℎվ(𝑐

, 𝑐) is a segmented quad-
ratic function of log 𝑡′ and log 𝑡, so a convex hull trick [3] 
can be used here to speed up dynamic programming. 

2.2.3 Chord Transition Inside Beat Periods 

In real-world cases, the change point of a chord can be 
inside a beat period sometimes. The most common cir-
cumstance is, the chord changes right in the middle of two 
beat positions. To allow this to happen, a new transition 
rule is added as a supplement. Chords can change in half-
beat positions with a higher transition penalty given, to 
limit its occurrence. 

  
Chord type Sample count Class Prior 
maj 1443840 

0.0784 
min 367413 
N 141463 0.0065 
7 257861 

0.0523 min7 231326 
maj7 76010 
maj/5 50048 

0.0261 
maj/3 35608 
min/5 7999 
min/b3 7695 
7(#9) 34636 

0.0261 

maj(9) 34284 
maj6 26777 
min9 25543 
maj/2 23094 
maj9 20441 
min/b7 13999 
11 11567 
maj/4 10350 
maj/b7 9774 
13 9039 
9 7924 
maj6(9) 7852 
min11 6998 
min/4 6741 
min7/5 4877 
min6 4666 
7/3 4483 
7/5 4110 
7(b9) 3558 
maj/7 3537 
min/6 3222 

Table 1. Chord types that used for training, and their prior 
factors 



  

 

3. TRAINING 

3.1 Training Methods 

As mentioned in section 2.1.3, we trained the random for-
est model on a full version of chord annotations. 

To avoid any overlapping with the test datasets in 
MIREX contest, only 680 annotations from the Billboard 
dataset [4] (from No. 1 to No. 1000) and their Chroma fea-
tures (provided by makers of Billboard dataset) are used 
for training. The chord types shown in Table 1 are reserved. 
Other chord types are discarded because of insufficient 
samples and will not appear in the output of the algorithm. 

Because chord types like sus4 or dim are not recog-
nized in the MIREX contest, they are removed even 
though the samples are in large quantities.  

 

4. RESULTS 

We performed the evaluation of chord recognition accu-
racy on the RWC dataset [5]. The WAOR (Weighted Av-
erage Overlap Ratio) score is calculated when mapping to 
four main chord vocabularies in MIREX contest. The re-
sults are shown in Table 2.  

 
Acc. % Chordino RF-HMM RF-BC 
MajMin 78.3 81.6 82.1 

MajMinBass 72.3 79.0 79.5 
Sevenths 53.1 69.7 70.2 

SeventhsBass 47.7 67.4 67.9 

Table 2. WAOR score of tested algorithms 

The system will be further evaluated and optimized in 
future work, as the version we submitted for MIREX con-
test is still a prototype. The estimation of beat accuracy 
will also be added in the future. 
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