

EXTENDED ABSTRACT FOR MIREX 2017 SUBMISSONS:
CHORD RECOGNITION USING RANDOM FOREST MODEL

Junyan Jiang, Wei Li, Yiming Wu

School of Computer Science and Technology,

Fudan University of Shanghai
{jiangjy14, weili-fudan, yimingwu11}@fudan.edu.cn

ABSTRACT

This extended abstract presents two new algorithms for au-
tomatic chord estimation. Both of them follows a Chor-
dino-like approach as a framework, but a new statistical
model, the random forest model, was introduced. In the
second submission, we suggest a new way to perform joint
estimation of beat positions and chord sequences, aiming
to replace the traditional beat-aligned chord estimation
methods.

1. INTRODUCTION

We submitted two systems. In the first system, we intro-
duce the random forest model to the automatic chord esti-
mation task. Instead of mapping the chord types into
smaller vocabulary, we perform training on a rich chord
classes directly. After that, the HMM decoder is used for
smoothing purpose.

In the second system, we introduce the beat positions to
limit chord transitions. To prevent the advert effect when
the beat-tracking algorithm outputs wrong annotations, we
adopted a new CRF model to estimate beat positions and
chord sequences jointly. Beats and chords are able to cor-
rect each other in the extracting process.

2. SUBMISSONS

2.1 RF-HMM Estimator

A random forest model is a collection of decision trees. A
single decision tree functions similar to the one in figure 2.
In a random forest, each decision tree is probabilistic,
trained separately by a randomized subset of training sam-
ples and features. A single decision tree may not be accu-
rate, so multiple trees are used to form a random forest for
better estimation results.

Music

HPSS

DTFT

NNLS Chroma
Extractor

Random Forest
Estimator

Chordogram

HMM Decoder
Beat-Chord

Decoder

Chord
Sequence

Chord
Sequence

Beat
Positions

System 1 System 2

Figure 1. Overview of the submitted systems

A

C:maj

<0.3

Bass A

>=0.3

A:min7

>=0.5

C:maj6

<0.5

Chroma contains C, E, G, A

Figure 2. An (oversimplified) example of a decision tree

2.1.1 Preprocess And Feature Extraction

To process an audio file, the HPSS (Harmonic Percussive
Source Separation) is performed first. Then we use
NNLS-Chroma [1] to get the features. Although the
NNLS-Chroma itself has the ability to reduce the influ-
ence of percussion components, an HPSS will make it
work better in general.

2.1.2 Chord Sequence Decoding

A trained random forest model is used to estimate the
emission strength of each chord label in each frame, form-
ing a chordogram 𝐇, where 𝐻։[𝑐] represents for the emis-
sion possibility for chord 𝑐 at ݊-th frame.

Then an HMM is used for decoding chord sequence. It’s
for smoothing propose only, similar to the one used by
Chordino.

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/

© 2017 The Authors

2.1.3 Large Chord Vocabulary And Class Reweighting

A chord vocabulary is the collection of different chords
before or after chord mapping is performed. Most estima-
tors working on the MajMin task tend to categorize chords
into 25 classes (12 major, 12 minor and 1 no-chord). How-
ever, as errors and unbalanced subclasses (e.g. inverted
chord subclasses) present in divided categories, the result
is not always satisfactory. We adopted a different solution
here: we regard different chord tags as distinct classes and
no chord simplification is performed on complex chord
types. Then the chord types with highest frequencies are
reserved, where rare chord types are ignored and will be
removed from the training set.

Within a certain chord type, the frequency of different
chord roots varies. To solve this problem, a full shift of
Chroma vector is performed to expand the training set. Af-
ter expansion, all chord roots are on an equal footing.

As a response to the unbalance between chord types, a
prior factor is attached to each type, and training samples
are reweighted when building the random forest. More
specifically, if the chord class 𝑄ք has a prior factor of 𝑃ք,
and 𝑁ք samples belong to the class, then the sample
weights 𝑊ք are calculated as:

𝑊ք =

⎩

⎨

⎧𝑃ք

𝑁ք

 if 𝑄ք is noϺchord

𝑃ք

12𝑁ք

 otherwise

2.2 The Beat-Chord Estimator

The relationship between chord change points and beat
positions is commonly known, as chords tend to keep
same during the beat period. In traditional beat-aligned
chord estimators, the beat-tracking algorithm is performed
first. The transition of chords is limited to the beat points,
or they are readjusted during the post-processing. How-
ever, beat-tracking algorithms are not so reliable at the
state of the art, leading to an advert effect on chord decod-
ing sometimes. In this submission, we suggest a new way
to extract beat positions and chord sequences at the same
time using a CRF (Conditional Random Field) model,
where beats and chords can correct each other during the
joint estimation.

2.2.1 Model Details

The CRF model was mostly based on [2], and new hidden
variables 𝐂 (represent for the chord sequence) and new
observation features 𝐇 (represent for the chordogram) are
introduced, as shown in figure 2.

And we use a Markovian form of CRF as in the original
paper:

𝑝(𝐘|𝐗) =
1

𝑍(𝐗)
Φ(𝑌φ, 𝐗) ః Ψ(𝑌։, 𝑌։−φ)

կ

։=ϵ

Φ(𝑌։, 𝐗)

The observation potentials Φ(𝑌։, 𝐗) can be factorized
into three terms:

Tn Tn+1Tn-1

Dn Dn+1Dn-1

Cn Cn+1Cn-1

S

G

H

Figure 3. Graphical representation of the CRF model

Φ(𝑌։, 𝐗) = Φյ (𝑌։, 𝐺։)Φե(𝑌։, 𝐒)Φդ(𝑌։, 𝐻։)
and

 Φյ (𝑌։, 𝐺։) = 𝐺։[𝑇։]

Φե(𝑌։, 𝐒) = 𝐷(𝑇։, 𝐷։, 𝐒) = S[𝑛 − 𝐷։ + 1] ∗ ΠյՓ
[𝑛]

 Φդ(𝑌։, 𝐻։) = 𝐻։[𝐶։]ᇁՈ

where 𝛾վ > 0 is the chord emission weight. A large 𝛾վ in-
dicates more confidence of chords information than beats
information, and vice versa.

We made some slight changes to the convolution kernel
Πյ [𝑛] in the second term than the original paper to make
it less likely to sink into a wrong phase, and easier to cal-
culate:

Πյ [𝑛] = 𝛿[𝑛] + 𝛿[𝑛 + 𝑇] + 𝛿[𝑛 − 𝑇]

+ 1.5𝛾փ(𝛿[𝑛 + 𝑇/2] + 𝛿[𝑛 − 𝑇/2])

+ 0.75𝛾(𝛿[𝑛 + 𝑇/4] + 𝛿[𝑛 + 3𝑇/4]

+ 𝛿[𝑛 − 𝑇/4] + 𝛿[𝑛 − 3𝑇/4])
where 𝛾փ is the half-beat weight and 𝛾 is the quarter-beat

weight, and 𝛿[𝑛] denotes the discrete impulse function.

The transition potentials Ψ(𝑌։, 𝑌։−φ) , also, follows
closely to the original paper, with the transition constraint
of chord added:

Ψ(𝑌։, 𝑌։−φ)

=
ℎ֏(𝑇։−φ, 𝑇։)𝑐֏(𝐶։−φ, 𝐶։) if 𝐷։−φ = 𝑇։−φ and 𝐷։ = 1

1 if 𝐷։ = 𝐷։−φ and 𝑇։ = 𝑇։−φ and 𝐶։ = 𝐶։−φ

0 otherwise

where ℎ֏(𝑇։−φ, 𝑇։) and 𝑐֏(𝐶։−φ, 𝐶։) are the tempo
transitions penalty term and chord transitions penalty term
respectively. The first term complies with:

ℎ֏(𝑇։−φ, 𝑇։) =

⎩

⎨

⎧

expভ−𝛾֏ ઊlog
𝑇։−φ

𝑇։

ઊ
ϵ

ম if
𝑇։−φ

𝑇։

< 2

exp(−𝛾֏|log 2|ϵ) if
𝑇։−φ

𝑇։

> 2

To get the optimal path of the hidden variables 𝐗, the
Viterbi algorithm is used. However, the naïve implemen-
tation of Viterbi algorithm has a time complexity of

Θ(𝑁𝐶ϵ𝑇 ϯ) and a space complexity of Θ(𝑁𝐶𝑇 ϵ), where
𝑁 is the total frame number, 𝐶 is the size of the chord vo-
cabulary, and

𝑇 = max 𝑇։ − min 𝑇։

=
60 ∙ SR

win_shift ∙ min_BPM
−

60 ∙ SR

win_shift ∙ max_BPM

The complexity is pretty unacceptable when the chord
vocabulary is large. So we will briefly discuss some opti-
mization in implementation here.

2.2.2 Algorithm Optimization

Let 𝛼։(𝑌։) = 𝛼։(𝑇։, 𝐷։, 𝐶։) denotes the forward vari-
able in Viterbi algorithm. In implementation, the parame-
ter 𝐷։ can be wiped out by only storing hidden states with
𝐷։ = 1. We define 𝑔(𝑛, 𝑡, 𝑐) ∶= log 𝛼։(𝑡, 1, 𝑐) as the sub-
state in a dynamic programming problem, and the transi-
tion formula can be rewritten as following:

𝑔(𝑛, 𝑡, 𝑐) = max
֏Ӵվ

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) + log ℎ֏(𝑡
, 𝑡) + log ℎվ(𝑐

, 𝑐)

+ ం [log 𝐺ք[𝑡
] + log 𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)

։−φ

ք=։−֏

+ 𝛾վ log𝐻ք[𝑐
]]

 = max
֏Ӵվ

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) − 𝛾֏ min{(log 𝑡′ − log 𝑡)ϵ, logϵ 2}

+ (log ℎվ(𝑐
, 𝑐) + 𝛾վ ం log𝐻ք[𝑐

]
։−φ

ք=։−֏

)

+ ం [log 𝐺ք[𝑡
]

։−φ

ք=։−֏

+ log𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)]

As we can pre-calculate the prefix sum of two sigma
terms respectively, both terms can be calculated in Θ(1)
(e.g. if we define 𝐻𝑠[𝑛, 𝑐] ∶= ∑ log 𝐻𝑖[𝑐]

𝑛

𝑖=0
, then we can get

∑ log 𝐻ք[𝑐
]։−φ

ք=։−֏
= 𝐻֎[𝑛 − 1, 𝑐] − 𝐻֎[𝑛 − 𝑡 − 1, 𝑐]), so the to-

tal time complexity is reduced to Θ(𝑁𝐶ϵ𝑇 ϵ).

Next, if we assume that for any different chord, transi-
tion penalty 𝑐֏(𝑐

, 𝑐) is always a constant number 𝛾տ (i.e.
𝑐֏(𝑐

, 𝑐) = 𝛾տ ∀𝑐 ≠ 𝑐), then it is not necessary to enu-
merate the 𝑐. Define and pre-calculate

𝑏𝑒𝑠𝑡_𝑐(𝑛, 𝑡) ∶= max
վ

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) + log 𝛾տ +𝛾վ ం log 𝐻ք[𝑐]
։−φ

ք=։−֏

Then, 𝑔(𝑛, 𝑡, 𝑐) is the maximum of the following two
cases:

𝑔տքցց(𝑛, 𝑡, 𝑐) ∶= max
֏

𝑏𝑒𝑠𝑡_𝑐(𝑛, 𝑡) − 𝛾֏ min{(log 𝑡 − log 𝑡)ϵ, logϵ 2}

+ ం [log𝐺ք[𝑡
]

։−φ

ք=։−֏

+ log𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)]

𝑔֎ռֈր(𝑛, 𝑡, 𝑐) ∶= max
֏

𝑔(𝑛 − 𝑡, 𝑡, 𝑐) − 𝛾֏ min{(log 𝑡′ − log 𝑡)ϵ, logϵ 2}

+ (log ℎվ(𝑐, 𝑐) + 𝛾վ ం log 𝐻ք[𝑐]
։−φ

ք=։−֏

)

+ ం [log𝐺ք[𝑡
]

։−φ

ք=։−֏

+ log𝐷(𝑡, 𝑖 − 𝑛 + 𝑡 + 1,𝐒)]

 𝑔(𝑛, 𝑡, 𝑐) = max{𝑔տքցց(𝑛, 𝑡, 𝑐), 𝑔֎ռֈր(𝑛, 𝑡, 𝑐)}

This is the version that the submission implemented. It
has a time complexity of Θ(𝑁𝐶𝑇 ϵ) and a space complex-
ity of Θ(𝑁𝐶𝑇). However, the time complexity can be fur-
ther optimized to Θ(𝑁𝐶𝑇) due to the fact that log is a mo-
notonous function and log ℎվ(𝑐

, 𝑐) is a segmented quad-
ratic function of log 𝑡′ and log 𝑡, so a convex hull trick [3]
can be used here to speed up dynamic programming.

2.2.3 Chord Transition Inside Beat Periods

In real-world cases, the change point of a chord can be
inside a beat period sometimes. The most common cir-
cumstance is, the chord changes right in the middle of two
beat positions. To allow this to happen, a new transition
rule is added as a supplement. Chords can change in half-
beat positions with a higher transition penalty given, to
limit its occurrence.

Chord type Sample count Class Prior
maj 1443840

0.0784
min 367413
N 141463 0.0065
7 257861

0.0523 min7 231326
maj7 76010
maj/5 50048

0.0261
maj/3 35608
min/5 7999
min/b3 7695
7(#9) 34636

0.0261

maj(9) 34284
maj6 26777
min9 25543
maj/2 23094
maj9 20441
min/b7 13999
11 11567
maj/4 10350
maj/b7 9774
13 9039
9 7924
maj6(9) 7852
min11 6998
min/4 6741
min7/5 4877
min6 4666
7/3 4483
7/5 4110
7(b9) 3558
maj/7 3537
min/6 3222

Table 1. Chord types that used for training, and their prior
factors

3. TRAINING

3.1 Training Methods

As mentioned in section 2.1.3, we trained the random for-
est model on a full version of chord annotations.

To avoid any overlapping with the test datasets in
MIREX contest, only 680 annotations from the Billboard
dataset [4] (from No. 1 to No. 1000) and their Chroma fea-
tures (provided by makers of Billboard dataset) are used
for training. The chord types shown in Table 1 are reserved.
Other chord types are discarded because of insufficient
samples and will not appear in the output of the algorithm.

Because chord types like sus4 or dim are not recog-
nized in the MIREX contest, they are removed even
though the samples are in large quantities.

4. RESULTS

We performed the evaluation of chord recognition accu-
racy on the RWC dataset [5]. The WAOR (Weighted Av-
erage Overlap Ratio) score is calculated when mapping to
four main chord vocabularies in MIREX contest. The re-
sults are shown in Table 2.

Acc. % Chordino RF-HMM RF-BC
MajMin 78.3 81.6 82.1

MajMinBass 72.3 79.0 79.5
Sevenths 53.1 69.7 70.2

SeventhsBass 47.7 67.4 67.9

Table 2. WAOR score of tested algorithms

The system will be further evaluated and optimized in
future work, as the version we submitted for MIREX con-
test is still a prototype. The estimation of beat accuracy
will also be added in the future.

5. REFERENCES

[1] M. Mauch and S. Dixon, “Approximate note
transcription for the improved identification of
difficult chords,” in Proceedings of the International
Symposium on Music Information Retrieval 2010, pp.
135–140, 2010.

[2] T. Fillon, C. Joder, S. Durand, and S. Essid. “A
conditional random field system for beat tracking,” in
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2015.

[3] Z. Galil and K. Park, “Dynamic programming with
convexity, concavity and sparsity,” in Theoretical
Computer Science, 92(1), pp. 49-76, 1992.

[4] John Ashley Burgoyne, Jonathan Wild, and Ichiro
Fujinaga, “An Expert Ground Truth Set for Audio
Chord Recognition and Music Analysis,”
in Proceedings of the 12th International Society for
Music Information Retrieval Conference, ed. Anssi
Klapuri and Colby Leider (Miami, FL, 2011), pp.
633–38.

[5] M. Goto, “Development of the RWC music database,”
in Proceedings of the 18th International Congress on
Acoustics (ICA 2004), pp. 553-556, 2004-April.

