

MIREX 2017 : Separately training Convolutional Neural Nets for

Ensemble category estimation and for Multiple F0 estimation

Shinjiro Mita, Gaku Hatanaka, Alexis Meneses, Nattapong Thammasan, Daiki Miura

Osaka University
mita@fbs.osaka-u.ac.jp

ABSTRACT

In this submission for MIREX 2017, our primary purpose

is to test how well Convolutional Neural Network (CNN)

performs on F0 estimation tasks of “multi-instrumental”

music. We tried End-to-End training CNN by using more

than 100,000 “multi-instrumental” tunes. Another purpose

in this submission is to compare which approach – (1)

training CNN End-to-End approach (another submission),

or (2) separately training between ensemble category es-

timation CNN and f0 estimation CNN (this submission) –

is better for F0 estimation tasks of multi-instrumental mu-

sic.

1. INTRODUCTION

Automatic music transcription (AMT), especially multiple

fundamental frequency (F0) estimation, is one of the fun-

damental tasks in music information retrieval (MIR).

Compared to F0 estimation from the monophonic mu-

sic, multiple F0 estimation from polyphonic music is

more challenging in that harmonics of multiple tones

overlapping one another prevent machines from recogniz-

ing each tone with high accuracy.

Recently, data-driven deep learning approaches have

been applied to variety of recognition tasks and achieved

outstanding successes [1] : image category classification

tasks, language sound recognition tasks, and so on. This

approach has also been applied to multiple F0 estimation

from polyphonic music [2,3] outperforming previous ap-

proaches such as NMF (non-negative matrix factoriza-

tion) [4], and PLCA (probabilistic latent component anal-

ysis) [5].

However, the researches mentioned above are using da-

taset consisting of only single instrumental music (espe-

cially piano music). Therefore, how well data-driven deep

learning approaches perform on “multi-instrumental” pol-

yphonic music is still challenging cutting-edge problem in

AMT.

In this MIREX 2017 submission, we try to apply CNN

for F0 estimation from multi-instrumental polyphonic mu-

sic, and test how well CNN performs after End-to-End

training by using more than 100,000 tunes (synthesized

audio from midi files).

2. METHOD

2.1 Dataset preparation

We used more than 130,000 midi file collection [a] con-

sisting of various types of music – Pop, Rock, Jazz, Clas-

sic, and others. After eliminating broken or empty midi

files, we synthesized 105,579 audio files from the midi

files. In order to synthesize audio files, we used sound-

font files – “Yamaha Disklavier Pro Grand Piano” [b] for

piano part, and “Fluid R3 GM” [c] for other instruments

parts.

2.2 Pre-processing

We applied constant Q transform (CQT) for each audio

to get spectrogram matrix by using the library librosa [6].

We tried 3 kinds of filter scales = {0.8, 1.0, 1.2} explor-

ing the optimal filter size of CQT. The sampling rate of

the spectrogram and ground truth piano-roll were 50 Hz.

As for frequency axis of the spectrogram, we divided 36

bins per octave, so the data size of frequency axis was

264 dimensions. After CQT, for each tune, we normal-

ized spectrogram so that mean is 0 and standard devia-

tion is 1, then applied logarithmic magnitude for the

spectrogram. In terms of psychophysics, the Weber-

Fechner law, perceived intensity is proportional to loga-

rithm of the actual intensity measured with an accurate

nonhuman instrument, roughly holds in any kinds of per-

ception. Spectrogram with logarithmic magnitude scale

may more approximate to human perception of sound in-

tensity than that with linear scale.

2.3 Model architecture

Our model architecture is shown in Figure 1. In Figure 1,

the CNN on the left is a classifier to predict 4 ensemble

categories – (1) Piano solo, (2) Including other instru-

ments than piano except drums, (3) Ensemble including

drums, and (4) Blank. The model structure of the classi-

fier is shown in Table 1. The classifier predicts the output

ensemble category label binary vector from the 0.9 sec

(45 frames) CQT spectrogram input. The right part of

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/

© 2017 The Authors

mailto:mita@fbs.osaka-u.ac.jp

Figure 1 is composed of 3 CNNs. The CNNs are F0 es-

timators trained by using the spectrogram input for each

ensemble category. The architectures of the F0 estimators

are based on ResNet [7]. The number of layers is 18. The

model input and output structures are changed to fit in

the size of 264 frequency bins and 0.1 sec time window

(5 frames) in the spectrogram matrix and output 88

pitches * 1 frame, respectively.

2.4 Model training

We split the 105,579 tunes into 90,000 tunes for training

models, 10,000 tunes for validation, and 5579 tunes for

evaluation and exploring the best binary threshold value

for post-processing.

 We used the library - TensorFlow & Keras API [d] -

for training models. We used Adam optimizer [8] and

categorical cross entropy as the error function for train-

ing models. After going full one circle of 100,000 tunes,

we finished training.

Layer name Value

Input (Frequency axis, Time axis) = (264, 45)

Convolution

(N of filters, Filter size time axis, Filter

size frequency axis)

= (32, 3, 3)

Activation function Hyperbolic tangent

Max pooling (Time axis, Frequency axis) = (1,2)

Dropout 0.25

Convolution (64, 3, 3)

Activation function Hyperbolic tangent

Max pooling (1,2)

Dropout 0.25

Fully connected 64

Activation function Relu

Dropout 0.5

Fully connected 4

Output
Binary category vector

 (4, 1)

Table 1 : The architecture of ensemble category classi-

fier

2.5 Post-processing

We chose the binary threshold (between 0 and 1) by

evaluating the accuracy by using 5579 tunes after model

training. Then, we connected 4 trained CNNs into 1 sys-

tem as the workflow shown in Figure 1. Overall, the sys-

tem results in the output of the predicted binary piano-

roll matrix whose structure is 88 pitch * number of

frames.

3. EVALUATION

The formal evaluation result is going to be published in

the MIREX 2017 results.

4. REFERENCES

[1] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learn-

ing,” Nature, vol. 521, pp. 436–444, 2015.

[2] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end

neural network for polyphonic piano music transcrip-

tion,” IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 24(5):927–939, May

2016.

Figure 1 : The workflow of our model connecting en-

semble category classifier and F0 estimators

[3] R. Kelz, M. Dorfer, F. Korzeniowski, S. Böck, A.

Arzt, and G. Widmer, “On the Potential of Simple

Framewise Approaches To Piano Transcription.”,

ISMIR 2016, 475–481

[4] E. Vincent, N. Bertin, and R. Badeau, “Adaptive

harmonic spectral decomposition for multiple pitch

estimation,” IEEE Transactions on Audio, Speech,

and Language Processing., vol. 18, no. 3, pp. 528–

537, 2010.

[5] E. Benetos and S. Dixon, “A shift-invariant latent

variable model for automatic music transcription,”

Computer Music Journal, vol. 36, no. 4, pp. 81–94,

2012.

[6] B. Mcfee, C. Raffel, D. Liang, D. P. W. Ellis, M.

Mcvicar, E. Battenberg, and O. Nieto, “librosa:

Audio and Music Signal Analysis in Python,”

Proceedings of the 14th Python in science

conference, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” Arxiv.Org, vol. 7,

no. 3, pp. 171–180, 2015.

[8] D. Kingma and J. Ba, “ADAM: A Method for

Stochastic Optimization,” Proc. 3rd Int. Conf. Learn.

Represent., pp. 1–15, 2015.

5. OTHER MATERIALS

URLs below are as of August, 2017

[a] 130,000 midi file collection

https://mega.nz/#!Elg1TA7T!MXEZPzq9s9YObiUc

MCoNQJmCbawZqzAkHzY4Ym6Gs_Q

[b] Yamaha Disklavier Pro Grand Piano SoundFont

http://freepats.zenvoid.org/Piano/acoustic-grand-

piano.html

[c] Fluid R3 GM SoundFont

https://sourceforge.net/p/fluidsynth/wiki/SoundFont/

[d] TensorFlow r1.2 / Keras 2 API

https://www.tensorflow.org/versions/r1.2/

https://faroit.github.io/keras-docs/1.1.1/

https://mega.nz/#!Elg1TA7T!MXEZPzq9s9YObiUcMCoNQJmCbawZqzAkHzY4Ym6Gs_Q
https://mega.nz/#!Elg1TA7T!MXEZPzq9s9YObiUcMCoNQJmCbawZqzAkHzY4Ym6Gs_Q
http://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
http://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
https://sourceforge.net/p/fluidsynth/wiki/SoundFont/
https://www.tensorflow.org/versions/r1.2/
https://faroit.github.io/keras-docs/1.1.1/

