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ABSTRACT 

 

This abstract presents our submission for Automatic Chord 

Recognition task. The system is constructed with a DRN 

(Deep Residual Network) trained with a large set of time-

synchronized MIDI-audio pairs to precisely estimate active 

pitch classes at each time frame of real-world music audio 

recordings. Then a trained BLSTM-CRF (Bidirectional Long 

Short Term Memory and Conditional Random Fields) 

architecture performs chord label estimation on the feature 

sequence. In addition, a simple thresholding decision process 

is applied at post-processing stage to recognize more complex 

chord types (seventh chords and inversions). 

 

 

 

1. SYSTEM OVERVIEW 

 

The overall network architecture and the calculation flow of 

our chord recognition system is illustrated in Fig.1, which 

includes three subsections, namely feature extractor, pattern 

matcher and optimal label decoder. The acoustic features are 

first calculated with the DRN from the spectrogram of each 

music signal. Then the feature vectors are fed into the 

BLSTM network as a sequence, and a class likelihood vector 

is calculated for each frame. Finally, the class likelihood 

sequence is fed to the trained CRF layer to decode the optimal 

label sequence. The three parts of the neural network is 

trained successively. For neural network implementation, we 

used deep learning framework Chainer1. 

 

2. FEATURE EXTRACTOR TRAINING 

 

This section describes the architecture of the deep feature 

extractor and its training procedure. Feature extractor trained 

with a large set of MIDI data is one of the key features of our 

system. 

 

2.1. Input Preprocessing 

 

At feature extractor training phase, each audio signal 

(synthesized from MIDI file) is first downsampled to 

22,050Hz and transformed into log-frequency spectrogram 

representation via Constant-Q Transform [2], which is 

computed over 6 octaves with 24 bins per octave and 2048 

samples of hop size. The magnitude spectrum is transformed 

                                                 
1 https://chainer.org/ 

to log scale such that  

 

Slog = ln(𝑆 + 𝜀)                              (1) 

 

where S represents the raw spectrogram and 𝜀  is a small 

number for avoiding zero value in log calculation. 

Then global mean-variance normalization is applied to 

reduce the variance of overall spectral energy between 

different music pieces. 

 

Snorm =
𝑆𝑙𝑜𝑔−𝑚𝑒𝑎𝑛(𝑆𝑙𝑜𝑔)

𝑣𝑎𝑟(𝑆𝑙𝑜𝑔)
                        (2) 

 

Finally, the pre-processed CQT spectrogram is sent to 

the DRN feature extractor model as input vectors. 

 

 
Figure 1. Overview of the presented chord recognition 

system. The system is composed of a DRN feature 

extractor trained with MIDI dataset, a BLSTM sequence 

classifier, and a CRF sequence decoder. 

https://chainer.org/


2.2. Target Representation 

 

We train the neural network so that it can transform the above 

spectrogram into an ideal harmonic representation. 

Concretely, it tries to predict which of the 12 pitch classes (C, 

C#, D, D#, E, F, F#, G, G#, A, A#, B) are activated at a 

specific time step, just like what original Chroma vector 

extractor is expected. Instead of obtaining the target vectors 

from chord annotations(as Deep Chroma extractor did [1]), 

we transform note information of each MIDI file into a 

Chroma-like 12 dimension binary vector sequence that tells 

the pitch class activations of corresponding audio frames of 

the spectrogram. That is, if any MIDI note is active at a 

specific time step, the value of corresponding pitch class of 

the target vector of the time frame is set to 1. 

Additionally, the representation is expanded to include 

more aspects of the harmonic information. We further add 

two feature vectors into the Chroma representation: bass note 

vector and top note vector. Each of them is a 12-dimension 

one-hot vector that tells the pitch class of the bass note (the 

lowest active MIDI note) and the top active note (the highest 

active MIDI note) in each time frame. The lowest and highest 

notes are excluded in original pitch class activation 

calculation, so that the “activated pitch class” vector 

represents the “middle notes” of the corresponding frame, 

which are often chord tones. In this way, we get a 36-

dimension deep acoustic feature for further classification. 

The target representation is illustrated in Fig.2. The network 

is expected to predict the top note as well as bass note and 

other pitch class activations of the current frame, 

simultaneously. 

 

2.3. Deep Residual Network 

 

We constructed a deep neural network for harmonic feature 

extraction. It is made up with stacked fully connected layers, 

where a shortcut connection is appended between the input 

and the output of each layer (which becomes a residual block 

of the Deep Residual Network). 

In our system, the network is constructed by stacking 5 

such layers. Each layer has 1024 units with tanh activation 

function. The output layer, activated with a sigmoid function, 

is intended to tell if each pitch class is activated (1.0) or not 

(0.0). 

2.4. Network Training 

 

The neural network is trained to minimize the mean-squared 

error between the network output and the target vectors. Fig.3 

 
 

Figure 2. MIDI note activation of a time frame is represented in three 12-dimension vectors, indicating current bass note, 

active pitch classes and top note respectively. 

 
Figure 3. The calculation pipeline of DNN feature 

extractor training with synthesized MIDI data. 



describes the overall structure of feature extractor training. 

The optimal parameters of the neural network can be 

estimated using backpropagation algorithm.  

For network training, we collected 210 MIDI files from 

RWC Classical, Jazz and Genres dataset [3], plus 12000 

MIDI files randomly selected from Lakh MIDI dataset [6]. 

We synthesized corresponding audio using Direct MIDI to 

MP3 Converter by Piston Software, with Chorium soundfont 

used as the sound source. 

 

 

5. BLSTM-CRF SEQUENCE DECODING 

ARCHITECTURE 

 
This section describes the BLSTM-CRF model for pattern 

matching and decoding chord sequence, given the feature 

sequence calculated by the DRN. BLSTM network performs 

pattern matching, and CRF infers the final label sequence. 

This part is trained after feature extractor training is finished. 

25 chord classes are defined for chord classification, 

including 12 major triads, 12 minor triads and a “Non-chord” 

label that indicates silent, percussive or monotone areas of 

music audio. 

 

5.1. BLSTM Network 

 

We construct a Bi-directional LSTM network with a pair of 

forward and backward recurrent layers with 128 LSTM units 

on each layer, which acts as a sequence classifier in our 

proposed model. It receives a feature vector sequence 

calculated by the DRN, and outputs another 25-dimension 

vector sequence that represents the chord class likelihoods of 

each frame.  

To reduce overfitting in the training phase, we apply 

dropout operation with probability 0.5 to the output of both 

LSTM layers. 

 

5.2. Conditional Random Fields 

 

Given an input sequence X, CRF models the conditional 

probability of output label sequence Y in the following 

manner: 

P(Y|X) =
expE(X,Y)

∑ 𝑒𝑥𝑝𝐸(𝑋,𝑌)
Y′

                         (3) 

 

where E(X|Y) is the energy function and Y' represents any 

possible label sequences for sequence X. 

In our system, we adopt a linear-chain CRF, which has 

been widely used in various sequence labelling tasks. In this 

case, the energy function E is defined as: 

 

E(X, Y) = ∑ (𝑥𝑖𝑦𝑖
+ 𝑐𝑦𝑖−1𝑦𝑖 )i                    (4) 

 

                                                 
2 The annotations provided by Taemin Cho is available at 

https://github.com/tmc323/Chord-Annotations 

For frame i, 𝑥𝑖𝑦𝑖
 is the class likelihood of 𝑦𝑖  (calculated by 

the BLSTM network) and 𝑐𝑦𝑖−1𝑦𝑖  is the label transition cost 

between label 𝑦𝑖−1and𝑦𝑖 . 

We train CRF by optimizing the label transition cost 

matrix c. Given an input sequence, the target is to minimize 

the negative log-likelihood of the expected label sequence: 

 

L = −(∑ 𝑥𝑖𝑦𝑖i + ∑ 𝑐𝑦𝑖−1𝑦𝑖 i − ln(Z))            (5) 

 

where Z is the normalizing constant. The parameter can be 

optimized with gradient descent algorithm. 

On decoding phase the model finds out the label sequence 

Y that maximizes the conditional probability  P(Y|X)  via 

Viterbi algorithm. 
 

5.3. Network Training 

 

At decoder training phase, the training dataset is composed of 

pairs of feature sequence (obtained from above feature 

extraction stage) and time-synchronized chord annotation 

data. For the submitted system, the training set is constructed 

with RWC Popular Music dataset and USPOP Pop music 

dataset2.  

On each training epoch of BLSTM-CRF model,  a fixed 

length (128 frames, about 10 seconds) are randomly taken 

from the dataset for loss calculation, for the decoder does not 

need to learn the dependency across the whole music. 

As shown in Figure 4, the classifier (BLSTM) and the 

decoder (CRF) component is trained individually. First, the 

BLSTM network is trained with the output layer activated 

with softmax function, to classify the feature sequence by 

itself. After this training is finished, the well-trained 

parameters of BLSTM are fixed and the parameters of CRF 

are optimized with the same dataset. 

 

 
 

Figure 4. Overview of BLSTM-CRF decoder training. 

The BLSTM network is first trained as a classifier, then 

the CRF is trained with the same dataset. 

https://github.com/tmc323/Chord-Annotations


6. TOWARDS LARGE VOCABULARY CHORD 

RECOGNITION 

 

In the presented neural network architecture, the recognition 

process is seen as a quantization process that assigns all 

observations to corresponding one-of-K representations, built 

on the assumption that the 24 classes (major and minor triads) 

are mutually independent. When the chord vocabulary 

include seventh chords and chord inversions, this assumption 

no longer holds [5]. To recognize complex chords in a more 

reasonable way, in the presented system, we keep the 

vocabulary of the neural network system unchanged, and 

determine complex chord types in at post-processing stage. 

In practice, the way that a human recognizes complex 

chords is generally divided into two steps: roughly estimate 

chords in triad chord level, then determine whether the 

sevenths or inversion is present in each triad, rather than 

regarding them as new independent chords. To mimic this 

process, we design a two-stage complex chord recognition 

method. 

Concretely, the proposed system do this by modifying 

qualities (major or minor triad) and inversion types of each 

recognized chord signature. Given a chord signature (in the 

form of major or minor triad) and the feature sequence 

(normalized on each frame) of corresponding time region, 

first the mathematical mean of the feature value along the 

dimension is calculated on its third, fifth, seventh and major-

seventh note, and bass feature value of its root, third and fifth 

note. Then the true quality and inversion are determined with 

an explicit thresholding metric. The decision flow of the 

process is shown in Fig. 5. In this way, the chord recognition 

system is able to support 61 types of chords if considering 

only the seventh chords, or 181 types of chords if further 

taking first and second chord inversions into account. At the 

same time, the recognition accuracy of triads is not affected. 
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Figure 5.The flow chart of complex chord type decision process, for both seventh and chord inversions. Given the estimated 

chord triads and corresponding feature sequence, both types of complex chords are determined with simple thresholding 

rules and comparisons, based on average values of the feature. 


