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ABSTRACT

The submission contains explanations accompanying the
submissions AR3 and AR4 to the Audio Onset Detection
campaign. The objective of the research was to investigate
into generating augmented datasets for training CNN for
musical onset detection.

1. INTRODUCTION

The detection of musical onsets (notes and other events)
is an important preprocessing step for subsequent musical
analysis or transformation. Accordingly, onset detection
has a long history [1] and starting with the research of Se-
bastian Boeck [2] the state of the art in this domain has
increasingly been established by means of using deep arti-
ficial neural networks [14].

A central problem for the deep learning approaches are
the availability of annotated datasets. Boeck maintains
a collection of dataset annotations 1 that contains about
40min of annotations gathering a wide variety of dataset
that have been created by different researchers. The sound
examples are widely varying and so is the quality of the an-
notation. It is in fact very difficult to coherently annotate
onsets in complex polyphonic recordings, on one hand be-
cause the precise location of onsets in polyphonic record-
ings cannot be established even by trained humans, and on
the other hand because the coherence of the annotation as
seen by a neural network might not exactly be what a hu-
man annotator assumes. Given that recent networks are
trained with very narrow target labels covering not more
than 20ms, a deviation of only 30ms may already have a
negative impact on the consistency of the training data and
in turn may slow down convergence of the network or force
the network to produce a wide response of the onset detec-
tion function, which may lead to spurious detections. Fur-
thermore, a dataset of that size sampled with 10ms contains
only 200k different frames while the number of parameters
in the current state of the art network [14] has around 35k
parameters. Therefore, network size cannot be increased

1 https://github.com/CPJKU/onset_db
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considerably without risk of server overfitting. Note that
the data set used to train that CNN network was covering
about 100 minutes with 26k onsets [14], which does not
significantly improve the situation.

In the present submission we have started with a few
publicly available datasets prepared by

• John Glover: [6] 2 ,

• H. Heo: Note-level Singing Voice Dataset 3

• S. Böck: [4] 4

• P. Leveau: [7] 5

• F. Jaillet: A database developed at IRCAM [12]
partly redistributed by [1] via Böck’s onset db (see
above).

• ENST-Drums: [5] 6

• ENST MAPS: the CL disklavier from [3] 7

besides the ENST Maps and ENST drum databases
these sounds cover about 200MB of audio ( 37 min at 16bit
44.1kHz). The note onsets of all but the piano and drum in-
struments contain only very few examples and to increase
the coverage of these instruments we have used state of
the art music and singing voice transformation algorithms
available at IRCAM to create and augmented dataset for
all but the ENST databases increasing the data to a total
amount of 11.4GB of audio (about 34h). The transforma-
tions that were used are partly the same as those suggested
in [13]: transposition -200/0/200 cents, time stretching
0.9/1/1.1, using however high quality algorithms [8,10] use
by audio professionals. Moreover there were two specific
transformations spectral envelope transposition -100/0/100
cents [11], and remixing of sinusoidal and noise compo-
nents [15] with three different settings that allow for fur-
ther modification of the audio in a musically relevant man-
ner. Singing voice signals were part of the database and
transformed using the shape invariant phase vocoder [9].

2 https://github.com/downloads/johnglover/
modal/onsets-1.0.tar.gz

3 http://marg.snu.ac.kr/automatic-music-transcription/
4 https://github.com/CPJKU/onset_db
5 http://www.tsi.telecom-paristech.

fr/aao/en/2011/07/13/onset_
leveau-a-database-for-onset-detection/

6 http://www.tsi.telecom-paristech.fr/aao/en/
2010/02/19/enst-drums-an-extensive-audio-visual-database-for-drum-signals-processing/

7 http://www.tsi.telecom-paristech.fr/aao/en/
2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/



Network INPUT CNN CNN Dense
tag layer layer layer layer
AR3 80x25x3 3x9x40 3x5x50 512
AR4 80x23x3 3x9x40 3x5x50 256

Table 1. Network topologies

network training set F-meas EOD F-meas EAD
AR3 TOD 95.3% 78.7%
AR3 TAD 95.0% 87.4%
AR4 TOD 95.1% 78.1%
AR4 TAD 95.0% 86.8%

Table 2. Network generalisation, performance on aug-
mented and original evaluation sets.

In total there are 81 variants of each sound file for that an-
notations are automatically derived from the manual anno-
tations of the original sounds. To ensure a maximally co-
herent annotation between all sounds, the results of a first
training run achieving between 80-90% F-measure was run
over all sounds and the detections were matched with man-
ual labels and shifted by maximally 20ms to the next pre-
dicted label to ensure a more coherent annotation of the
training corpus.

The parameters were selected such that that the per-
ceived audio degration remained sufficiently small such
that the audio would still represent real music, however, the
large variation of transformations ensures that the neural
networks would be exposed to a significantly increased va-
riety of signals. We used the same input representation and
a similar network structure as proposed in [14] increasing
however the network size in terms of the receptive field, the
number of filters, and hidden nodes in the dense layer. The
two submissions have the topology specified in 1 where all
CNN layers are given by means of (freq x time x feature),
and the INPUT layer specifies the receptive field (see [14]).
The dense layer specs are given by the number of hidden
units. The networks only difference is in the size of the
receptive field and the number of nodes in the dense layer.
These differences have a strong impact on the number of
parameters is 2 · 106 for AR3 and 8.5 · 105 for the AR4
network.

We trained the networks on the original dataset (TOD)
and the augmented dataset (TAD) and compared perfor-
mance on a small hold out test set that contained 3 files
randomly selected from each dataset. To be able to evalu-
ate the improvement of the generalisation performance we
made two experiments the first one covering only the orig-
inal versions of the evaluation files (EOD), and the second
one passing these files through the data augmentation pro-
cedure (EAD). The results are given in table 2.

While the evaluation on the original evaluation set is
very close to the training error and does hardly change for
the networks trained on original and augmented datasets,
the evaluation error is very significantly improved when
training on the augmented datasets when evaluation is per-
formed on augmented evaluation data. Listening to the

augmented data does not show any signs of perceptual in-
coherence but nevertheless further investigation is needed
to see whether the augmented data is still representative of
realworld audio.

In the MIREX evaluation the networks where evaluated
with and average F-measure of 86.04% for AR3 and 85.7%
for AR4 showing that the strong increase in the number of
network parameters apparently not lvad to any consider-
able overfitting. The two networks were ranked 2nd and
3rd in the overall comparison and interestingly only the
structurally very similar CNN network of [14] achieved a
slightly better performance.

It is interesting to compare the individual class: The
AR3 network with a larger receptive field size clearly out-
performs the AR4 network for softer onsets: brass, sus-
tained strings and winds, it performs approximately sim-
ilar for all other instruments. Compared to the original
CNN OnsetDetector of Schlüter that has a smaller recep-
tive field than AR3 and AR4 we find similar relations be-
sides that CNN OnsetDetector performes significantly bet-
ter than AR3 for sustained strings. Because Recall and
Precision are both worse and approximately by the same
percentage it might well be that this degradation with re-
spect to SB4 can be explained by the fact that the onset
annotation strategie that was used to train our submissions
is less similar to the ground truth annotation than the on-
set annotation strategie used for constructing the training
dataset for SB4. As sustained strings are generally having
much slower onsets different guidelines about the onset po-
sition of a relatively slow string attack could well explain
the drop in performance for the sustained strings ensem-
ble. Finally, SB4 performs significantly better for singing
voice, and a little bit better for drums, and complex mix-
tures.
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