

Seq2SeqP4P: A Sequence-to-Sequence model for Monophonic
Music Continuation

 Eric Nichols

Microsoft
Eric.Nichols@microsoft.com

ABSTRACT

I developed a sequence-to-sequence (seq2seq) neural
network model for the 2018 MIREX “Patterns for Predic-
tion” task. This entry addresses the monophonic version
of task 1 (sequence continuation); task 2 and polyphonic
inputs are not handled. The model takes symbolic (MIDI-
style) inputs and produces a short continuation to follow
the input. Inputs are preprocessed into a format composed
of note-on, note-off, and time-shift commands inspired by
PerformanceRNN [3]. The chosen format is straightfor-
ward to represent for neural network purposes as it con-
sists of three separate one-hot-encoded input vectors; this
format also is used to represent the output for the model.
The model is a seq2seq model using two stacked LSTM
layers of 1024 nodes in each layer, trained using teacher
forcing.

1. INTRODUCTION

The name of this task, “Patterns for Prediction” suggests
that the goal is to predict musical continuations by dis-
covering repeated patterns. I chose not to try to solve the
pattern-recognition problem explicitly (e.g., by writing
algorithms to explicitly do pattern-matching), and instead
attempted to have a machine learning model learn how to
map inputs (priming sequences) to outputs (true continua-
tions) in an end-to-end manner.

In the spirit of end-to-end learning, no musically-
aware features were computed based on the input symbol-
ic data, which consisted of time-stamped note-on and
note-off commands with associated MIDI numbers (other
metadata such as estimated key was provided, but ig-
nored).

2. INPUT DATA

The input data was transformed into a sequence of note-
on, note-off, and time-shift commands, and each input
score was represented as a sequence of these commands.
Each command takes one argument. For note-on and
note-off, the argument is the integer MIDI number of the

note in question (restricted to the range of the 88 notes on
the piano). For time-shift, the argument is the number of
sub-beats to move forward in time, in the range 0–48.
Time is quantized to 12 sub-beats per beat, thus the dura-
tion can be between 0 and 4 beats, in steps of 1/12 notes
(thus allowing for certain triplets as well as quarter,
eighth, sixteenth, and thirty-second notes). For example, a
performance of an eighth-note “C” followed by a dotted-
quarter rest would be represented as the sequence:

[note-on(48), time-shift(6), note-on(48), time-shift(18)]

Each command is represented as a binary vector, separat-
ed into three components: command, midi, duration. Each
of these components is represented as a one-hot vector,
with each position in the vector corresponding to one of
the possible values of that item. For instance, command
consists of three possibilities, midi consists of 89 (88 + 1
for n/a), and time-shift consists of 49. For an irrelevant
component (for example, midi number for a time-shift
command), a “0” or “n/a” value of that component is se-
lected. The three one-hot sub-vectors are concatenated
together to give a single binary command vector. A score
is represented as a time series of these command vectors.

For simplicity and training efficiency, the model was
designed to take in a fixed number of input notes (30) and
to output a fixed number of output notes (10). The task
gives us an indefinite number of input notes and a fixed
duration of 10 beats of output, so the model doesn’t ex-
actly align with the input data. Thus, the input data was
sliced up to generate training and evaluation datasets of
the required sizes.

For each score in the provided training data, a slid-
ing window of size 40 notes (30 inputs, 10 outputs) was
used to generate examples. The window was moved with
a hop size of 5 notes to reduce the number of output ex-
amples compared with a size-1 sliding window. This re-
sulted in a dataset of over 2.6 million input/output exam-
ple pairs, of which 80% were used for training and 20%
for testing (with care taken to split the dataset at the score
level to avoid leakage).

3. MODEL

A sequence-to-sequence (seq2seq) model [4] was trained
to model the relationship between the inputs and outputs

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/

© 2010 The Authors

in the dataset. The encoder of the model consists of two
stacked LSTM layers, each consisting of 1024 nodes.
Each training sequence is input to the encoder, and after
reading the entire input, the hidden states of the two
LSTM nodes (i.e., two vectors of length 1024 each) are
fed into the decoder network, which also consists of two
LSTM layers. The decoder outputs three separate vectors,
each one-hot-encoded, representing the components of
the commands. Each output component vector is com-
pared with the desired target output, and a loss is comput-
ed via the cross-entropy loss function. Losses for the three
components are summed together to give the total net-
work loss. The network is trained via backpropagation-
through-time using the Adam optimizer. Gradient clip-
ping is used. The final model consists of ~26.5M parame-
ters.

After training, we run the model in inference mode to
generate sequence continuations. As this model requires
exactly 30 input notes, if the input is too long is it trun-
cated to the final 30 notes; if too short, the source materi-
al is duplicated repeatedly until the desired length is
achieved. Sequence continuations were generated by fol-
lowing the same procedure as above of presenting the in-
put data in the required form to the encoder, but then run-
ning the decoder one timestep at a time until 10 beats of
time have elapsed in the output. After each timestep, the
argmax of each component in the output vector of the de-
coder is computed to give the output command. This
command (in one-hot-encoded binary form, as before) is
fed back into the decoder network as an input for the next
time stamp.

A command-line program was implemented to operate on
a batch of input score files (in CSV format) and output
the continuations generated by the model.

The model was developed using the Keras library [2]
running with the Tensorflow [1] backend.

4. EVALUATION

Evaluation is in progress.

5. DISCUSSION

The model appears to learn to generate pitches in the cor-
rect key of the source material. Sometimes the model out-
puts static pitches (e.g., every note might have the same
pitch), but in other cases it outputs more interesting se-
quences of pitches, which may mirror patterns in the input
sequence. Rhythmic outputs are not very interesting, but
they do depend on the input material. The model tends to
output the same note duration and rest duration over and
over.

6. REFERENCES

[1] Abadi, M. et al.: “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software
available from tensorflow.org.

[2] Chollet, F. et al.: “Keras,” 2015. Software available
from http://keras.io.

[3] Simon, I and Oore, S: “Performance RNN:
Generating Music with Expressive Timing and
Dynamics,” Magenta Blog, 2017. https://magenta.
tensorflow.org/performance-rnn

[4] Sutskever, I., Vinyals, O., Le, Q.: “Sequence to
Sequence Learning with Neural Networks,”
Advances in Neural Information Processing
Systems. pp. 3104–3112, 2014.

