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ABSTRACT 

I developed a sequence-to-sequence (seq2seq) neural 
network model for the 2018 MIREX “Patterns for Predic-
tion” task. This entry addresses the monophonic version 
of task 1 (sequence continuation); task 2 and polyphonic 
inputs are not handled.  The model takes symbolic (MIDI-
style) inputs and produces a short continuation to follow 
the input. Inputs are preprocessed into a format composed 
of note-on, note-off, and time-shift commands inspired by 
PerformanceRNN [3]. The chosen format is straightfor-
ward to represent for neural network purposes as it con-
sists of three separate one-hot-encoded input vectors; this 
format also is used to represent the output for the model. 
The model is a seq2seq model using two stacked LSTM 
layers of 1024 nodes in each layer, trained using teacher 
forcing. 

1. INTRODUCTION 

The name of this task, “Patterns for Prediction” suggests 
that the goal is to predict musical continuations by dis-
covering repeated patterns. I chose not to try to solve the 
pattern-recognition problem explicitly (e.g., by writing 
algorithms to explicitly do pattern-matching), and instead 
attempted to have a machine learning model learn how to 
map inputs (priming sequences) to outputs (true continua-
tions) in an end-to-end manner. 

In the spirit of end-to-end learning, no musically-
aware features were computed based on the input symbol-
ic data, which consisted of time-stamped note-on and 
note-off commands with associated MIDI numbers (other 
metadata such as estimated key was provided, but ig-
nored). 

2. INPUT DATA 

The input data was transformed into a sequence of note-
on, note-off, and time-shift commands, and each input 
score was represented as a sequence of these commands. 
Each command takes one argument. For note-on and 
note-off, the argument is the integer MIDI number of the 

 
 
 
 

note in question (restricted to the range of the 88 notes on 
the piano). For time-shift, the argument is the number of 
sub-beats to move forward in time, in the range 0–48. 
Time is quantized to 12 sub-beats per beat, thus the dura-
tion can be between 0 and 4 beats, in steps of 1/12 notes 
(thus allowing for certain triplets as well as quarter, 
eighth, sixteenth, and thirty-second notes). For example, a 
performance of an eighth-note “C” followed by a dotted-
quarter rest would be represented as the sequence: 

[note-on(48), time-shift(6), note-on(48), time-shift(18)] 

Each command is represented as a binary vector, separat-
ed into three components: command, midi, duration. Each 
of these components is represented as a one-hot vector, 
with each position in the vector corresponding to one of 
the possible values of that item. For instance, command 
consists of three possibilities, midi consists of 89 (88 + 1  
for n/a), and time-shift consists of 49. For an irrelevant 
component (for example, midi number for a time-shift 
command), a “0” or “n/a” value of that component is se-
lected. The three one-hot sub-vectors are concatenated 
together to give a single binary command vector. A score 
is represented as a time series of these command vectors. 

For simplicity and training efficiency, the model was 
designed to take in a fixed number of input notes (30) and 
to output a fixed number of output notes (10). The task 
gives us an indefinite number of input notes and a fixed 
duration of 10 beats of output, so the model doesn’t ex-
actly align with the input data. Thus, the input data was 
sliced up to generate training and evaluation datasets of 
the required sizes.  

For each score in the provided training data, a slid-
ing window of size 40 notes (30 inputs, 10 outputs) was 
used to generate examples. The window was moved with 
a hop size of 5 notes to reduce the number of output ex-
amples compared with a size-1 sliding window. This re-
sulted in a dataset of over 2.6 million input/output exam-
ple pairs, of which 80% were used for training and 20% 
for testing (with care taken to split the dataset at the score 
level to avoid leakage). 

 

3. MODEL 

A sequence-to-sequence (seq2seq) model [4] was trained 
to model the relationship between the inputs and outputs 
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in the dataset. The encoder of the model consists of two 
stacked LSTM layers, each consisting of 1024 nodes. 
Each training sequence is input to the encoder, and after 
reading the entire input, the hidden states of the two 
LSTM nodes (i.e., two vectors of length 1024 each) are 
fed into the decoder network, which also consists of two 
LSTM layers. The decoder outputs three separate vectors, 
each one-hot-encoded, representing the components of 
the commands. Each output component vector is com-
pared with the desired target output, and a loss is comput-
ed via the cross-entropy loss function. Losses for the three 
components are summed together to give the total net-
work loss. The network is trained via backpropagation-
through-time using the Adam optimizer. Gradient clip-
ping is used. The final model consists of ~26.5M parame-
ters. 

After training, we run the model in inference mode to 
generate sequence continuations. As this model requires 
exactly 30 input notes, if the input is too long is it trun-
cated to the final 30 notes; if too short, the source materi-
al is duplicated repeatedly until the desired length is 
achieved.  Sequence continuations were generated by fol-
lowing the same procedure as above of presenting the in-
put data in the required form to the encoder, but then run-
ning the decoder one timestep at a time until 10 beats of 
time have elapsed in the output. After each timestep, the 
argmax of each component in the output vector of the de-
coder is computed to give the output command. This 
command (in one-hot-encoded binary form, as before) is 
fed back into the decoder network as an input for the next 
time stamp. 

A command-line program was implemented to operate on 
a batch of input score files (in CSV format) and output 
the continuations generated by the model. 

The model was developed using the Keras library [2] 
running with the Tensorflow [1] backend. 

4. EVALUATION 

Evaluation is in progress. 

5. DISCUSSION 

The model appears to learn to generate pitches in the cor-
rect key of the source material. Sometimes the model out-
puts static pitches (e.g., every note might have the same 
pitch), but in other cases it outputs more interesting se-
quences of pitches, which may mirror patterns in the input 
sequence. Rhythmic outputs are not very interesting, but 
they do depend on the input material. The model tends to 
output the same note duration and rest duration over and 
over. 
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