

MIREX 2018 Submission: A Structural Chord Representation for
Automatic Large-Vocabulary Chord Transcription

Junyan Jiang Ke Chen Wei Li Guangyu Xia
Fudan University
jiangjy14@
fudan.edu.cn

Fudan University
kchen15@

fudan.edu.cn

Fudan University
weili-fudan@
fudan.edu.cn

New York University
Shanghai

gxia@nyu.edu

ABSTRACT

In this extended abstract, we propose a new model for
practical chord transcription task. The core concept of the
new model is to represent any chord label by a set of
subparts (i.e., root, triad, bass) according to their common
musical structures. A multitask classifier is then trained to
recognize all the subparts given the audio feature, and then
labels of individual subparts are reassembled to form the
final chord label. A Recurrent Convolutional Neural
Network (RCNN) is used to build the multitask classifier.

1. SYSTEM OVERVIEW

Submission
ID

Algorithm Training &
Validation Sets

JLCX1 Proposed (no beat alignment,
w/o weighted loss)

Isophonics,
Billboard (public
part), RWC Pop, and
MARL collections

JLCX2 Proposed (with beat
alignment, w/o weighted loss)

Table 1. Summary of submitted systems

Large-vocabulary chord transcription is a difficult task, as
the number of chord classes is large and the distribution of
training chord classes is extremely biased. To solve the
problem, we avoided training a classifier of chord labels
directly. Instead, we decompose a chord into several
components, each of which can be recognized more easily.

It is important that such decomposition can be applied
universally to most chord types, and the properties of
target components are useful for automatic chord
transcription. We briefly introduce the chord
representation in Section 1.1 and discuss how it can be
utilized for chord transcription in Section 1.2 and 1.3.

1.1 Structural Chord Representation

The note combination of a chord may vary, yet some
regular patterns can be detected in most chords. For
example, the 7th note of a chord, if exists, is most likely to
be one among 7, b7 and bb7 (in dim7 chords), and these
three notes are mutually exclusive in a chord. Such

properties are helpful when we decompose any chord into
a concise form.

We represent each chord as the following tuple:

Chord = (Root,Triad,Bass,Seventh, Ninth,Eleventh,Thirteenth)

(1)

where every component corresponds to a set of possible
values according to their musical meaning. Specifically:

Root ← {N,C,C#,D … , B}
Triad ← {X,N,maj,min, sus4, sus2, dim, aug, 5,… }

Bass ← {N,C, C#, D… ,B}
Seventh ← {X, N, 7, b7, bb7}
Ninth ← {X,N, 9,#9, b9}
Eleventh ← {X,N, 11,#11}
Thirteenth ← {X, N, 13, b13}

where X means not applicable, and N means none/not
present. The 5 in Triad category denotes the power chord
(e.g. C:5 is equivalent to C:(1,5)).

The X values are for special situations that some of the
components are undecidable or meaningless for certain
chords. For example, in a chord whose basic triad type is
sus4, the 11th note has the same scale as the 4th note, so
talking about added-11th would be meaningless under this
situation. Components with value X are ignored when

calculating the joint probability 𝑝(Chord).

Another note is that some modern popular music sheets
annotate C:(1,3,5,6) as C:maj6. We here regard the
added-6th note as an equivalent form of an added-13th note.

Table 2 shows our representation for some common
chords.

Chord Root Triad Bass 7th 9th 11th 13th
G:maj G maj G N N N N
G:maj7 G maj G 7 N N N
G:7(b9) G maj G b7 b9 N N
G:min7/b3 G min Bb b7 N N N
B:hdim7 B dim B b7 N N N
A:sus4(7) A sus4 A b7 N X N
C:9(13) C maj C b7 9 N 13
N N N N N N N N

Table 2. Some examples of the chord representation
method

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/

© 2010 The Authors

1.2 A Probabilistic Model for Chord Transcription

For automatic chord transcription, we are interested in
𝑝(Chord|Feature) where Feature represents the extracted
audio feature around a certain frame, and Chord denotes
the chord label for the corresponding frame. We assume
that some certain components of a chord are conditional
independent from each other given the audio feature, and
rewrite the formula as:

 𝑝(Chord|Feature)

= 𝑝(Root,Triad,Bass, Seventh,Ninth, Eleventh, Thirteenth|Feature)

= 𝑝(Root,Triad|Feature)𝑝(Bass|Feature)𝑝(Seventh|Root,Feature)

 𝑝(Ninth|Root, Feature)𝑝(Eleventh|Root,Feature)

 𝑝(Thirteenth|Root,Feature) (2)

The dependency of these random variables can be
summarized into a Bayesian network as shown in Figure 1.

Figure 1. The graphical model of chord structure for

automatic chord transcription

As the target probability is factored into six terms, each
term can be modeled by a classifier.

1.2.1 Feature Extraction

A Constant-Q Transform (CQT) spectrogram is used as the
input feature of the model. We calculate the CQT
spectrogram with a sample rate of 22050 and a hop length
of 512. 252 CQT filter banks are used ranging from midi
note C1 to C7.

1.2.2 Model Architecture

We adopted a typical Recurrent Convolutional Neural
Network (RCNN) architecture to build a multitask
classifier, with Long Short-Term Memory (LSTM) cells as
the recurrent layer unit. The model structure is shown in
Table 3.

1.2.3 Training Methods

When training the model, we used the Adam Optimizer [1]
with decreasing learning rate from 1e-3, 1e-4 to 1e-5. The
model was trained 60 epochs in total. During each epoch,
every training song (and its pitch-shifted version as
augmented data) is iterated once and a 1000-frame (about
23 seconds) piece will be randomly selected from each
song.

Layer Type Parameters
Convolution 16×3×3
Convolution 16×3×3
Convolution 16×3×3
Max Pooling 3×3
Convolution 32×3×3
Convolution 32×3×3
Convolution 32×3×3
Max Pooling 3×3
Convolution 64×3×3
Convolution 64×3×3
Max Pooling 3×4
Bi-LSTM 128×2
Fully Connected 145

Table 3. RCNN model structure. A rectifier activation
function is applied after each convolution layer, followed
by a batch normalization layer. The stride of the window

in any pooling layer is (1, 𝑏) where 𝑏 is the second
dimension of its kernel size.

Table 4. Network output explanation. Note that every
different root uses a different output for seventh, ninth,

eleventh and thirteenth components classification

The loss of the network is defined as the total loss of
each classification subtask. For any of the seventh, ninth,
eleventh and thirteenth components, every different root
(except N) uses a different output for classification, so the
loss will be only calculated on the classification output
linked with the given root (except N). Additionally, if any
component has a value X, the component will not
contribute to the loss.

We found in early experiments that some uncommon
decoration components (e.g. 9th, 11th ,13th) are hard to
train because of unbalanced training data, as only a small
proportion of training data has such decorations. To
overcome the problem, the weighted loss strategy can be
applied to these components. For example, recognizing
an add-9th note as no decoration (N) would produce
significantly higher loss than recognizing no decoration
as an add-9th note.

Output Dim. Size Function
1-25 1 1 𝑝(N|Feature)

2-13 12 𝑝(Root,Triad = maj|Feature)
14-25 12 𝑝(Root,Triad = min|Feature)

26-37 12 𝑝(Bass|Feature)
38-73 12×3 𝑝(Seventh|Root, Feature)
74-97 12×2 𝑝(Ninth|Root,Feature)
98-121 12×2 𝑝(Eleventh|Root, Feature)
122-145 12×2 𝑝(Thirteenth|Root, Feature)

1.2.4 Inference

After the model is trained, we can predict a sequence of
chord emission probability given the music feature.
Instead of directly decode the chord with maximum joint
probability, we first decode the chord with the maximum
joint probability of roots, triads and basses, then the most
likely decorations (seventh, ninth, eleventh, thirteenth) of
the chords are decoded.

In practice we found another problem: as LSTM is
intrinsically still a frame-wise classification algorithm, it
sometimes suffers from an issue of frequent label change.
To solve the problem, we mimicked the use of smoothing
Hidden Markov Model (HMM) here to suppress frequent
chord transition. Formally, we use dynamic programming
to find the best sequence 𝑐φ … 𝑐։ that maximizes the cost
𝐽φ,𝐽ϵ in turn:

 𝐽φ(𝑐φ,… , 𝑐։|Feature)

= ∑ log 𝑝(𝑐ք|Feature)։

ք=φ
− ∑ 𝛼 ⋅ [𝑐ք ≠ 𝑐ք+φ]

։−φ

ք=φ
 (3)

 𝐽ϵ(𝑑φ,… , 𝑑։|Feature, 𝑐φ,… , 𝑐։)

= ∑ log 𝑝(𝑑ք|Feature, 𝑐ք)
։

ք=φ
− ∑ 𝛽 ⋅ [𝑑ք ≠ 𝑑ք+φ ∧ 𝑐ք = 𝑐ք+φ]

։−φ

ք=φ
 (4)

where 𝑐ք denotes the decoded triad chords and basses for
the 𝑖-th frame and 𝑑ք denotes the decoded decorations for
the 𝑖-th frame. The best values of transition penalty 𝛼, 𝛽
are acquired by performing a grid search over the training
set.

Moreover, if the beat positions of a music piece are
provided, it is more likely that a chord transition happens
on the beat position. Our second submission restricted the
chord transition to align with beat positions, which are
provided by DBNDownBeatTracker [4] from the
Madmom python package.

2. EXPERIMENTS

2.1 Datasets

We used 1217 songs from Isophonics, Billboard, RWC
Pop, and MARL collections collected by Humphrey and
Bello [2, 3] to form the dataset. All chord labels were first
converted from string to our proposed representation. For
MIREX evaluation, we further selected a subset of the
components as valid values for training, and marked other
values as an X:

Triad ← {X,N,maj,min}

Seventh ← {X, N, 7, b7}

Ninth ← {X,N, 9}

Eleventh ← {X,N, 11}

Thirteenth ← {X, N, 13}

Data augmentation was done by performing pitch-
shifting operations (from -5 semitones to +6 semitones) on
the training set. The annotated roots and basses are shifted
accordingly.

2.2 Model Evaluation

We performed 4-fold cross-validation over the dataset,
with about 304 songs per subset. Three subsets are used for
training the model, and the other is used for testing. No
data augmentation is performed on the testing set.

We calculated the WAOR (Weighted Average Overlap
Ratio) scores [6] on typical metrics for chord estimation
with python package mir_eval. Table 5 shows the results.

Metrics [5] P P+B P+W P+W+B
Root 0.7660 0.8377 0.8364 0.8368 0.8342
MajMin 0.7449 0.8305 0.8293 0.8298 0.8273
MajMinBass 0.7151 0.8099 0.8086 0.8090 0.8062
Sevenths 0.5571 0.7095 0.7081 0.7016 0.6992
SeventhsBass 0.5338 0.6956 0.6942 0.6873 0.6847

Table 5. Model evaluation results. P denotes our
proposed model, B denotes that beat alignment is

adopted, and W denotes that weighted loss is applied for
uncommon decorations (2.5 times for 7 and b7, 5 times

for 9, 11 and 13) in training

Furthermore, to evaluate the model performance on
large-vocabulary chord transcription, a confusion matrix
on chord types for the RCNN model is presented.

The confusion matrix is calculated as:

 𝜙քӴօ =
∑ ᇂՎӱՏ(ր֎֏Ӵ֍րց)

(Պՙӱ)∈ԯ

∑ ∑ ᇂՎӱՐ(ր֎֏Ӵ֍րց)
(ՊՙӱՊՋ)∈ԯՐ

 (5)

where 𝐷 denotes all pairs of estimated chords and
reference chords on the same frame. 𝜙քӴօ denotes the

confusion degree of chord type 𝑖 and 𝑗 . Boolean value
𝛿քӴօ(𝑐φ, 𝑐ϵ) = 1 if and only if

(1) 𝑐φ and 𝑐ϵ are in the same root (here we assume
chord N shares the same root with any chord), and

(2) chord 𝑐φ has chord type 𝑖 while chord 𝑐ϵ has chord
type 𝑗.

The result is shown in Figure 2 and Figure 3.

Figure 2. Confusion matrix on the testing set (model P)

Figure 3. Confusion matrix on the testing set (model

P+W)

We found in the results that both models perform well
on triads and their inversions. The model with a weighted
loss on training outperforms the other on recognition of
uncommon decorations like 9, 11 and 13, which is in line
with our expectations.

3. REFERENCES

[1] D. Kinga and J. B. Adam: “A method for stochastic
optimization,” International Conference on Learning
Representations (ICLR), Vol.5, 2015.

[2] B. McFee and J. P. Bello: “Structured training for
large-vocabulary chord recognition,” ISMIR, 2017.

[3] E. J. Humphrey and J. P. Bello: “Four Timely Insights
on Automatic Chord Estimation,” ISMIR, pp. 673–
679, 2015.

[4] S. Böck, F. Krebs, and G. Widmer: “Joint Beat and
Downbeat Tracking with Recurrent Neural Networks,”
ISMIR, pp. 255–261, 2016.

[5] M. Mauch and S. Dixon: “Approximate Note
Transcription for the Improved Identification of
Difficult Chords,” ISMIR, pp. 135–140, 2010.

[6] J. Pauwels and G. Peeters: “Evaluating automatically
estimated chord sequences,” Acoustics, Speech and
Signal Processing (ICASSP), pp. 749–753, 2013.

