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ABSTRACT 

In this extended abstract, we propose a new model for 
practical chord transcription task. The core concept of the 
new model is to represent any chord label by a set of 
subparts (i.e., root, triad, bass) according to their common 
musical structures. A multitask classifier is then trained to 
recognize all the subparts given the audio feature, and then 
labels of individual subparts are reassembled to form the 
final chord label. A Recurrent Convolutional Neural 
Network (RCNN) is used to build the multitask classifier. 

1. SYSTEM OVERVIEW 

Submission 
ID 

Algorithm Training &  
Validation Sets 

JLCX1 Proposed (no beat alignment, 
w/o weighted loss) 

Isophonics, 
Billboard (public 
part), RWC Pop, and 
MARL collections  

JLCX2 Proposed (with beat 
alignment, w/o weighted loss) 

Table 1. Summary of submitted systems 

Large-vocabulary chord transcription is a difficult task, as 
the number of chord classes is large and the distribution of 
training chord classes is extremely biased. To solve the 
problem, we avoided training a classifier of chord labels 
directly. Instead, we decompose a chord into several 
components, each of which can be recognized more easily. 

It is important that such decomposition can be applied 
universally to most chord types, and the properties of 
target components are useful for automatic chord 
transcription. We briefly introduce the chord 
representation in Section 1.1 and discuss how it can be 
utilized for chord transcription in Section 1.2 and 1.3. 

1.1 Structural Chord Representation 

The note combination of a chord may vary, yet some 
regular patterns can be detected in most chords. For 
example, the 7th note of a chord, if exists, is most likely to 
be one among 7, b7 and bb7 (in dim7 chords), and these 
three notes are mutually exclusive in a chord. Such 

properties are helpful when we decompose any chord into 
a concise form. 

We represent each chord as the following tuple: 

Chord = (Root,Triad,Bass,Seventh, Ninth,Eleventh,Thirteenth)

(1) 

where every component corresponds to a set of possible 
values according to their musical meaning. Specifically: 

Root ← {N,C,C#,D … , B} 
Triad ← {X,N,maj,min, sus4, sus2, dim, aug, 5,… } 

Bass ← {N,C, C#, D… ,B} 
Seventh ← {X, N, 7, b7, bb7} 
Ninth ← {X,N, 9,#9, b9} 
Eleventh ← {X,N, 11,#11} 
Thirteenth ← {X, N, 13, b13} 

where X means not applicable, and N means none/not 
present. The 5 in Triad category denotes the power chord 
(e.g. C:5 is equivalent to C:(1,5)). 

The X values are for special situations that some of the 
components are undecidable or meaningless for certain 
chords. For example, in a chord whose basic triad type is 
sus4, the 11th note has the same scale as the 4th note, so 
talking about added-11th would be meaningless under this 
situation. Components with value X are ignored when 

calculating the joint probability 𝑝(Chord).  

Another note is that some modern popular music sheets 
annotate C:(1,3,5,6) as C:maj6. We here regard the 
added-6th note as an equivalent form of an added-13th note. 

Table 2 shows our representation for some common 
chords. 

 

Chord Root Triad Bass 7th 9th 11th  13th  
G:maj G maj G N N N N 
G:maj7 G maj G 7 N N N 
G:7(b9) G maj G b7 b9 N N 
G:min7/b3 G min Bb b7 N N N 
B:hdim7 B dim B b7 N N N 
A:sus4(7) A sus4 A b7 N X N 
C:9(13) C maj C b7 9 N 13 
N N N N N N N N 

Table 2. Some examples of the chord representation 
method 
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1.2 A Probabilistic Model for Chord Transcription 

For automatic chord transcription, we are interested in 
𝑝(Chord|Feature) where Feature represents the extracted 
audio feature around a certain frame, and Chord denotes 
the chord label for the corresponding frame. We assume 
that some certain components of a chord are conditional 
independent from each other given the audio feature, and 
rewrite the formula as: 
 

   𝑝(Chord|Feature) 

= 𝑝(Root,Triad,Bass, Seventh,Ninth, Eleventh, Thirteenth|Feature) 

= 𝑝(Root,Triad|Feature)𝑝(Bass|Feature)𝑝(Seventh|Root,Feature) 

   𝑝(Ninth|Root, Feature)𝑝(Eleventh|Root,Feature) 

   𝑝(Thirteenth|Root,Feature)                                                            (2) 

The dependency of these random variables can be 
summarized into a Bayesian network as shown in Figure 1. 

 
Figure 1. The graphical model of chord structure for 

automatic chord transcription 

As the target probability is factored into six terms, each 
term can be modeled by a classifier. 

1.2.1 Feature Extraction 

A Constant-Q Transform (CQT) spectrogram is used as the 
input feature of the model. We calculate the CQT 
spectrogram with a sample rate of 22050 and a hop length 
of 512. 252 CQT filter banks are used ranging from midi 
note C1 to C7. 

1.2.2 Model Architecture 

We adopted a typical Recurrent Convolutional Neural 
Network (RCNN) architecture to build a multitask 
classifier, with Long Short-Term Memory (LSTM) cells as 
the recurrent layer unit. The model structure is shown in 
Table 3. 

1.2.3 Training Methods 

When training the model, we used the Adam Optimizer [1] 
with decreasing learning rate from 1e-3, 1e-4 to 1e-5. The 
model was trained 60 epochs in total. During each epoch, 
every training song (and its pitch-shifted version as 
augmented data) is iterated once and a 1000-frame (about 
23 seconds) piece will be randomly selected from each 
song. 

 

 
Layer Type Parameters 
Convolution 16×3×3 
Convolution 16×3×3 
Convolution 16×3×3 
Max Pooling 3×3 
Convolution 32×3×3 
Convolution 32×3×3 
Convolution 32×3×3 
Max Pooling 3×3 
Convolution 64×3×3 
Convolution 64×3×3 
Max Pooling 3×4 
Bi-LSTM 128×2 
Fully Connected 145 

Table 3. RCNN model structure. A rectifier activation 
function is applied after each convolution layer, followed 
by a batch normalization layer. The stride of the window 

in any pooling layer is (1, 𝑏) where 𝑏 is the second 
dimension of its kernel size. 

Table 4. Network output explanation. Note that every 
different root uses a different output for seventh, ninth, 

eleventh and thirteenth components classification 

The loss of the network is defined as the total loss of 
each classification subtask. For any of the seventh, ninth, 
eleventh and thirteenth components, every different root 
(except N) uses a different output for classification, so the 
loss will be only calculated on the classification output 
linked with the given root (except N). Additionally, if any 
component has a value X, the component will not 
contribute to the loss. 

We found in early experiments that some uncommon 
decoration components (e.g. 9th, 11th ,13th) are hard to 
train because of unbalanced training data, as only a small 
proportion of training data has such decorations. To 
overcome the problem, the weighted loss strategy can be 
applied to these components. For example, recognizing 
an add-9th note as no decoration (N) would produce 
significantly higher loss than recognizing no decoration 
as an add-9th note. 

Output Dim. Size Function 
1-25  1 1 𝑝(N|Feature) 

2-13  12 𝑝(Root,Triad = maj|Feature) 
14-25  12 𝑝(Root,Triad = min|Feature) 

26-37  12 𝑝(Bass|Feature) 
38-73  12×3 𝑝(Seventh|Root, Feature) 
74-97  12×2 𝑝(Ninth|Root,Feature) 
98-121  12×2 𝑝(Eleventh|Root, Feature) 
122-145 12×2 𝑝(Thirteenth|Root, Feature) 



  
 

1.2.4 Inference 

After the model is trained, we can predict a sequence of 
chord emission probability given the music feature. 
Instead of directly decode the chord with maximum joint 
probability, we first decode the chord with the maximum 
joint probability of roots, triads and basses, then the most 
likely decorations (seventh, ninth, eleventh, thirteenth) of 
the chords are decoded. 

In practice we found another problem: as LSTM is 
intrinsically still a frame-wise classification algorithm, it 
sometimes suffers from an issue of frequent label change. 
To solve the problem, we mimicked the use of smoothing 
Hidden Markov Model (HMM) here to suppress frequent 
chord transition. Formally, we use dynamic programming 
to find the best sequence 𝑐φ … 𝑐։ that maximizes the cost 
𝐽φ,𝐽ϵ in turn: 

   𝐽φ(𝑐φ,… , 𝑐։|Feature) 

= ∑ log 𝑝(𝑐ք|Feature)։

ք=φ
− ∑ 𝛼 ⋅ [𝑐ք ≠ 𝑐ք+φ]

։−φ

ք=φ
                              (3) 

   𝐽ϵ(𝑑φ,… , 𝑑։|Feature, 𝑐φ,… , 𝑐։) 

= ∑ log 𝑝(𝑑ք|Feature, 𝑐ք)
։

ք=φ
− ∑ 𝛽 ⋅ [𝑑ք ≠ 𝑑ք+φ ∧ 𝑐ք = 𝑐ք+φ]

։−φ

ք=φ
    (4) 

where 𝑐ք denotes the decoded triad chords and basses for 
the 𝑖-th frame and  𝑑ք denotes the decoded decorations for 
the 𝑖-th frame.  The best values of transition penalty 𝛼, 𝛽 
are acquired by performing a grid search over the training 
set. 

Moreover, if the beat positions of a music piece are 
provided, it is more likely that a chord transition happens 
on the beat position. Our second submission restricted the 
chord transition to align with beat positions, which are 
provided by DBNDownBeatTracker [4] from the 
Madmom python package. 

2. EXPERIMENTS 

2.1 Datasets 

We used 1217 songs from Isophonics, Billboard, RWC 
Pop, and MARL collections collected by Humphrey and 
Bello [2, 3] to form the dataset. All chord labels were first 
converted from string to our proposed representation. For 
MIREX evaluation, we further selected a subset of the 
components as valid values for training, and marked other 
values as an X: 

Triad ← {X,N,maj,min} 

Seventh ← {X, N, 7, b7} 

Ninth ← {X,N, 9} 

Eleventh ← {X,N, 11} 

Thirteenth ← {X, N, 13} 

Data augmentation was done by performing pitch-
shifting operations (from -5 semitones to +6 semitones) on 
the training set. The annotated roots and basses are shifted 
accordingly. 

2.2 Model Evaluation 

We performed 4-fold cross-validation over the dataset, 
with about 304 songs per subset. Three subsets are used for 
training the model, and the other is used for testing. No 
data augmentation is performed on the testing set. 

We calculated the WAOR (Weighted Average Overlap 
Ratio) scores [6] on typical metrics for chord estimation 
with python package mir_eval. Table 5 shows the results. 

 

Metrics [5] P P+B P+W P+W+B 
Root 0.7660 0.8377 0.8364 0.8368 0.8342 
MajMin 0.7449 0.8305 0.8293 0.8298 0.8273 
MajMinBass 0.7151 0.8099 0.8086 0.8090 0.8062 
Sevenths 0.5571 0.7095 0.7081 0.7016 0.6992 
SeventhsBass 0.5338 0.6956 0.6942 0.6873 0.6847 

Table 5. Model evaluation results. P denotes our 
proposed model, B denotes that beat alignment is 

adopted, and W denotes that weighted loss is applied for 
uncommon decorations (2.5 times for 7 and b7, 5 times 

for 9, 11 and 13) in training 

Furthermore, to evaluate the model performance on 
large-vocabulary chord transcription, a confusion matrix 
on chord types for the RCNN model is presented. 

The confusion matrix is calculated as: 

                   𝜙քӴօ =
∑ ᇂՎӱՏ(ր֎֏Ӵ֍րց)

(Պՙӱ )∈ԯ

∑ ∑ ᇂՎӱՐ(ր֎֏Ӵ֍րց)
(ՊՙӱՊՋ)∈ԯՐ

                 (5) 

where 𝐷  denotes all pairs of estimated chords and 
reference chords on the same frame.  𝜙քӴօ  denotes the 

confusion degree of chord type 𝑖  and 𝑗 . Boolean value 
𝛿քӴօ(𝑐φ, 𝑐ϵ) = 1 if and only if  

(1) 𝑐φ  and 𝑐ϵ  are in the same root (here we assume 
chord N shares the same root with any chord), and 

(2) chord 𝑐φ has chord type 𝑖 while chord 𝑐ϵ has chord 
type 𝑗.  

The result is shown in Figure 2 and Figure 3.  

 
Figure 2. Confusion matrix on the testing set (model P) 



  
 

 
Figure 3. Confusion matrix on the testing set (model 

P+W) 

We found in the results that both models perform well 
on triads and their inversions. The model with a weighted 
loss on training outperforms the other on recognition of 
uncommon decorations like 9, 11 and 13, which is in line 
with our expectations. 
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