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ABSTRACT

This paper describes the two variants OL1 and OL2 of
the model submitted to the MIREX 2018 tempo estima-
tion tasks, and compare them with respect to my previous
submission for MIREX 2013 [3].

1. INTRODUCTION

The tempo estimation model has been built within the MIR-
toolbox platform 1 [1]. We submitted a previous version of
the method to MIREX 2013 [3], and integrated it in version
1.6 of MIRtoolbox 2 . The new improvements presented in
this paper will be made available in the upcoming version
1.8 of MIRtoolbox.

2. ONSET CURVE

We use our ‘Emerge’ onset detector released in MIRtool-
box 1.5 that can handle vibrato and dense textures [2, 3].
The method is based on an improvement and generaliza-
tion of the flux method that look at particular time / fre-
quency region and can tolerate spectral fluctuations of lim-
ited frequency range.

Instead of using a frequency resolution of at least 0.1
Hz, as in our previous submission [3], we can simply use
a resolution of at least 1 Hz. This makes the computation
significantly faster and less greedy in memory.

3. PERIODICITY ESTIMATION

Periodicity estimation is carried out using exactly the same
principles as in our previous submission [3].

Tempo is estimated by computing autocorrelation func-
tions, on a moving window of frame length 5 seconds and
hop factor 5%, for a range of time lags that corresponds to
a tempo range between 24 and 500 BPM. The autocorrela-
tion curve is normalized so that the autocorrelation at zero
lag is identically 1.

1 http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials
/mirtoolbox

2 Due to a bug, this method was not working correctly in version 1.7.
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One interesting problem with autocorrelation functions
is that a lag can be selected as prominent because it is found
often in the signal although the lag is not repeated succes-
sively. We propose a simple solution based on the follow-
ing property: For a given lag to be repeated at least twice,
the periodicity score associated with twice the lag should
have a high probability score as well. This heuristics can
be implemented as a single post-processing operations ap-
plied to the autocorrelation function, removing all period-
icity candidate that to not have stronger periodicity at twice
its lag.

4. PEAK PICKING

Peak picking is carried out using the same principles as in
our previous submission [3].

It is applied to the frame-by-frame autocorrelation func-
tions. The beginning and the end of the autocorrelation
curves are not taken into consideration for peak picking as
they do not correspond to actual local maxima. The only
modification in the new submission is that the first peak—
i.e., the one with lowest autocorrelation lag—should be
preceded by a valley with negative autocorrelation. This
enables to filter out non-relevant peaks.

A given local maximum will be considered as a peak
if its distance with the previous and successive local min-
ima (if any) is higher than this threshold .05. This distance
is expressed with respect to the total amplitude of the in-
put signal. This distance of .05 is hence equivalent to 5
% of the distance between the global maximum and the
minimum of the input signal [4]. The peak position and
amplitude are estimated more precisely using quadratic in-
terpolation.

5. TRACKING THE WHOLE METRICAL
HIERARCHY

In the presence of a given pulsation in the musical excerpt
that is being analyzed – let’s say with a BPM of 120, i.e.,
with two pulses per second – the periodicity function will
indicate a high periodicity score related to the period .5
s. But generally if there is a pulsation at a given tempo,
multiples of the pulsation can also be found that are twice
slower (1 s), three times slower, etc. For that reason, the
periodicity function usually shows a series of peaks equally
distant for all multiples of a given period. This has close
connections with the notion of metrical structure in music,



with the hierarchy ordering the levels of rhythmical values
such as whole notes, half notes, quarter notes, etc.

We track large part of the metrical structure, by follow-
ing in parallel each metrical level separately and combin-
ing all the levels in one single hierarchical structure. In
this metrical hierarchy, a limited number of metrical lev-
els are detected as dominant levels, for particular periods
of time in the piece of music being analyzed. Dominant
levels might sometimes correspond to what previous ap-
proaches consider as tactus and bar beats.

The internal model of metrical hierarchy considers that
pulse lags of individual metrical levels are in exact integer
relation one with the others. Apart from the first dominant
metrical level discovered i0, each metrical level i is de-
pendent on another metrical level iri : its theoretical pulse
lag τ̂ i is at any time instant n a multiple or division of its
referential metrical level:

τ̂ in = τ̂
iri
n ×mi or τ̂ i = τ̂

iri
n /di (1)

The pulse lags of the entire metrical hierarchy at a time
instant n is therefore conditioned solely by the pulse lag

τ̂ i0n of one single level i0, associated with the first dominant
level discovered.

τ̂ in = τ̂ i0n × li (2)

5.1 Causal algorithm

The analysis is causal: the whole process is carried out for
each successive time instant, during which all the levels
of the metrical hierarchy are tentatively mapped with the
peaks of the periodicity curve at that given time frame n,
i.e. real lag values of the form τ in are given to the different
levels i. In the same time, the theoretical set of values given
by equation 2 are updated so that they map as closely as
possible with the real values.

For each successive time frame n, peaks k in the peri-
odicity function are considered in decreasing order of pe-
riodicity score pk.

Each peak k, related to a periodicity lag tk is tentatively
mapped to one metrical level i. For that aim, a succession
of tests is carried out.

• The first test explained in [3] has been removed.

• We try to associate the peak to any currently active
metrical level i ∈ A:

iAk = argmin
i∈A

(
min(|tk − τ i∗|, |tk − tk−1|)

)
(3)

where τ i∗ indicates the current periodicity lag value
associated with level i, it can be τ in if there has al-
ready been a peak at the current time frame n asso-
ciated with that level, or else its value at the most re-
cent frame where a peak was found τ in−m,m < M .

– If no peak has been integrated into the metri-
cal hierarchy at the current time frame n, the
chosen metrical level is candidate to become

dominant, which would be likely only if this
integration is particularly smooth:

∣∣∣tk − τ iAk∗ ∣∣∣ < .1 and

∣∣∣∣∣log2
(
tk

τ
iAk
∗

)∣∣∣∣∣ < .2 (4)

=⇒ τ
iDk
n = tk (5)

If this succeeds, the chosen metrical level is
considered as dominant if its current peak peri-
odicity score is sufficiently high and if its refer-
ential metrical level is also already dominant:

pk > θ and ir
iA
k

∈ D =⇒ iAk ∈ D (6)

– In the other cases, this integration can be con-
sidered under a loosen condition:∣∣∣tk − τ iAk∗ ∣∣∣ < δk =⇒ τ

iAk
n = tk (7)

If the current peak has a pulse lag tk that is
closer to the theoretical peak than the currently

registered metrical level lag τ̂
iAk
n is, then the

metrical level is updated:∣∣∣tk − τ iAkn ∣∣∣ < ∣∣∣∣τ̂ iAkn − τ iAkn ∣∣∣∣ =⇒ τ
iAk
n = tk

(8)

If that same peak is sufficiently strong (pk > .1), we
check whether it initiates a new metrical level:

• For all the slower metrical levels, we find those that
have a theoretical pulse lag that is in integer ratio
with the peak lag:

i ∈ A,min

(
τ̂ in
tk

mod 1, 1−

(
τ̂ in
tk

mod 1

))
< ε

(9)
where ε is set to to .02 if no other stronger peak in
the current time frame n has been identified with the
metrical hierarchy, and else to .2 in the other case.

If we find several of those slower levels in integer ra-
tio, we select the fastest one, unless we find a slower
one with a ratio defined in equation 9 that would be
closer to 0.

• Similarly, for all the faster metrical levels, we find
those that have a theoretical pulse lag that is in inte-
ger ratio with the peak lag:

i ∈ A,min

(
tk

τ̂ in
mod 1, 1−

(
tk

τ̂ in
mod 1

))
< ε

(10)
where ε is set to to .02 if no other stronger peak in
the current time frame n has been identified with the
metrical hierarchy, and else to .2 in the other case.

• If we have found both a slower and a faster level, we
select the one with stronger periodicity score.



• This gives us a referential metrical level iR, upon
which our new discovered metrical level iN will be
based. The level index liN of the new metrical level
is defined as:

liN = liR ∗

[
tk

τ̂ iRn

]
(11)

Finally, if the strongest periodicity peak in the given
time frame n is not associated with any level of the met-
rical hierarchy, a new metrical hierarchy is created, with a
single metrical level related to that peak. These multiple
metrical hierarchies live parallel existences, and the algo-
rithm continues by tentatively mapping the peaks of the
periodicity curve on these multiple hierarchies in parallel.
Mechanisms have also been conceived to fuse multiple hi-
erarchies whenever it turns out that they belong to a single
hierarchy.

Once all the peaks pk of a given time frame n have been
considered, the theoretical pulse lags are updated based on
the new empirical data collected.

For lack of space, the details of the models are not given
in this paper. Values used for some parameters defined in
this section: δ0 = .1, θ = .15,M = 10.

Complete examples of metrical structures are shown and
discussed in [2].

In MIRtoolbox 1.5 and later, this metrical analysis can
be performed by simply calling the new mirmetre operator.

6. TEMPO-RELATED METRICAL LEVEL
SELECTION

If several metrical hierarchies have been constructed on a
given musical except, the metrical hierarchy covering the
largest temporal span is selected for the definition of the
tempo.

For the selected metrical hierarchy, to each metrical level
is associated a numerical score, computed as a summa-
tion across frames of the related periodicity score for each
frame. An additional weight proposed in the previous sub-
mission [3] has been removed.

In the variant OL2, scores that are below a given thresh-
old (set to 2) are filtered out.

Then we construct all possible metrical structures, made
of a series of levels that have integer ratio, and that could
be related to the idea of tactus/tatum/bar decomposition.
We choose the metrical structure that yields the best over-
all score (obtained by summing the score related to each
selected level).

One problem with this method is that candidate metri-
cal hierarchies can have various number of levels, so com-
paring the summation of the score would penalise those
with fewer number of levels. Therefore, while our prevous
submission [3] was simply comparing these summation, in
the new models OL1 and OL2, when comparing two hier-
archies, we only select the most dominant levels of each
hierarchy in such a way that we get two hierarchies with
same number of levels. This truncation is virtually per-

formed only when comparing pair of hierarchies; the select
hierarchy keeps all its levels that were initially constructed.

For the selected metrical structure, we finally select two
most dominant levels with periodicity between 30 and 300
BPMs by choosing the two levels with best scores. Before
selection, these scores are first weighted by a resonance
curve that indicates a preference for periodicities closer to
120 BPMs.

In the new models OL1 and OL2, a periodicity that is
higher than 140 BPM cannot belong to the two selected
metrical levels, except if that fast pulsation is ternary, i.e.,
if the pulsation at the next level is three times lower.

For each of the two selected metrical levels, the final
tempo value is obtained by taking the median of the BPM
values collected across frames.
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