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ABSTRACT

In this paper, we describe three models submitted to the
2018 MIREX Audio Key Detection task. The goal of the
task is to identify the key of an audio recording of a piece
of western music. Our three models are: (OM1) a novel
neural network consisting of convolutional layers followed
by a GRU for temporal context; (OM2) a reproduction
of [3], the best-performing model from last year’s compe-
tition, which has a similar structure to OM1, but without
the potential for picking up temporal information that the
GRU has; and (OM3) a simple logistic regression baseline.
While our models are outperformed in this year’s task by
others in the official evaluation, there are some test datasets
where even (OM3) performs comparably if not better than
other models. Our main contributions are an examination
of the key distributions of various datasets, as well as an in-
vestigation into how the datasets chosen for training might
affect test performance. All of the code used in this work,
including for the dataset examination, is freely available at
https://github.com/apmcleod/key-detect.

1. INTRODUCTION

The key of a piece of western music identifies the tonal
centre of that piece, its most common pitches, as well as its
mode. As such, the key detection is an important problem
in music information retrieval. In the MIREX Audio Key
Detection task, an audio excerpt is given and each model
is asked to identify the key, which may be any of 24: all
12 possible tonal centres and either major or minor mode
(other modes are not considered).

2. SUBMISSIONS

Last year’s top-performing model [3] does not seem to
incorporate any long-distance temporal information into its
key detection. The convolutional layers have the ability
to use up to five seconds of context, but no more. This is
interesting, because listening for long-distance temporal
clues such as cadences and chord progressions are what we
(the authors) use when performing the task by hand.
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Thus, our first submission, OM1, is structured similarly
to [3], initially stacking 5 convolutional layers. However, it
then consists of a bi-directional GRU layer to give temporal
context, followed by another convolutional layer and two
linear layers (full implementation details are in the code).

Our second submission, OM2, is simply our reproduc-
tion of [3], trained on our own data.

Finally, OM3 is a simple baseline which performs logis-
tic regression on the average magnitude in each frequency
bin across time.

We preprocess the input into CQT spectrograms with
bins ranging from C1 to C7 in quarter tone steps. 1

3. DATA

We use four different datasets for training and testing:

1. GTZAN [6]: 837 pieces from various genres. 2

2. Giant Steps [2]: 604 pieces of EDM.
3. Giant Steps MTG: 1347 additional pieces of EDM. 3

4. Million Songs Dataset (MSD) [1]: contemporary pop-
ular music, each labelled with a key, a key confidence,
a mode, and mode confidence. We take the subset
which is aligned with the Lakh MIDI Dataset [4] and
the pieces which have a key confidence and mode
confidence each greater than 0.5, 14122 in total.

It is important to note that the distribution of keys in the
datasets is significantly skewed. Overall, we have 12014
major pieces and only 4896 minor pieces. Figures 1, and 2
investigate this skew further.
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Figure 1. Counts of keys from all datasets.

1 We use librosa’s hybrid cqt.
2 GTZAN labels are taken from https://github.com/

alexanderlerch/gtzan_key
3 https://github.com/GiantSteps/

giantsteps-mtg-key-dataset

https://github.com/apmcleod/key-detect
https://librosa.github.io/librosa/generated/librosa.core.hybrid_cqt.html
https://github.com/alexanderlerch/gtzan_key
https://github.com/alexanderlerch/gtzan_key
https://github.com/GiantSteps/giantsteps-mtg-key-dataset
https://github.com/GiantSteps/giantsteps-mtg-key-dataset
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Figure 2. Proportion of major/minor keys in each dataset.

3.1 Augmentation

After splitting our data randomly into train and test sets, we
perform data augmentation on our training set to try to in-
crease our models’ generalisation across keys. In particular,
we augment the data so that each possible key (both major
and minor) has exactly the same number of pieces. This
is in contrast to previous work, such as [3] and [5], which
augment each piece to every possible tonal centre, resulting
in no change to the skewed distribution of keys.

We augment each possible key up to the maximum count
(2443 of C major) by pitch shifting pieces from surrounding
keys to it (in order of increasing pitch difference) until the
desired count of 2443 was reached. This results in 31741
augmented pieces in the training set, compared to a total of
12683 non-augmented pieces.

4. RESULTS

We found it surprisingly difficult to beat our simple baseline
OM3. The confusion matrices in Figure 3 show that the
baseline does generally well across all keys, and OM1 and
OM2 both struggle on certain keys. OM1 in particular
struggles with rare keys, even with data augmentation: C#
major, and A# and G# minor. OM2 performs poorly on C#,
F, and G major, and A, B, C#, and D# minor. The overall
score of each model on our test set is found in Table 1.

Figures 4 and 5 investigate each model’s performance
on the train and test sets respectively, broken down by each
type of error. From these figures it can be seen that, while
OM1 and OM3 seem to perform similarly, OM2 doesn’t
get as many keys correct, instead making perfect 5th or
relative key errors. Figures 6 and 7 show OM1 and OM2’s
errors on the test set respectively, divided by dataset. From
these plots, two things seem clear: (1) GTZAN and MSD
seem to be easier datasets than either Giant Steps or Giant
Steps MTG (it is worth remembering that the latter two
datsets skew more heavily towards minor keys, of which
there is less non-augmented training data); and (2) OM2’s
additional perfect 5th and relative key errors seem to come
mostly from from GTZAN and MSD.

While OM1 does outperform OM2 on our data, both
seem to underperform [3] significantly (although the test
sets are different). This suggests that either (1) our re-

Model OM1 OM2 OM3

Score 72.2 62.7 69.9

Table 1. The overall score of each model on our test set.

implementation of [3] is incorrect, or (2) these models are
particularly sensitive to the training data and procedure.

5. CONCLUSION

Whether our new model OM1 has learned any temporal
information has not been investigated. Given the minimal
increase in performance over the baseline OM3, which ex-
plicitly has no access to any temporal information, it seems
unlikely. Future work will evaluate this explicitly and tweak
the model until it does use time. Additionally, the difference
in performance of all of our models between our test set
and the published MIREX results should be investigated.
It seems that our models are particularly sensitive to the
specific training distribution. We would ideally like a model
which is able to generalise across keys, no matter the train-
ing set distribution. Furthermore, that OM3 outperforms
some models on some datasets, even in the official evalua-
tion, shows that the problem can theoretically be addressed
with very few parameters, drawing into question whether
the complexity of our other models is warranted.
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faculty award, and also by the EPSRC Centre for Doc-
toral Training in Data Science, funded by the UK Engi-
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Le Goff. Two data sets for tempo estimation and key
detection in electronic dance music annotated from user
corrections. In ISMIR, 2015.

[3] Filip Korzeniowski and Gerhard Widmer. End-to-end
musical key estimation using a convolutional neural
network. In European Signal Processing Conference
(EUSIPCO), pages 966–970. IEEE, 2017.

[4] Colin Raffel. Learning-based methods for comparing
sequences, with applications to audio-to-midi alignment
and matching. PhD thesis, 2016.

[5] Hendrik Schreiber. MIREX 2017 CNN-based auto-
matic musical key detection submissions HS1/HS2/HS3.
2017.

[6] George Tzanetakis and Perry Cook. Musical genre clas-
sification of audio signals. IEEE Transactions on speech
and audio processing, 10(5):293–302, 2002.



0 2 4 6 8 10 12 14 16 18 20 22
Predicted label

0
2
4
6
8

10
12
14
16
18
20
22

Tr
ue

 la
be

l

Test

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20 22
Predicted label

0
2
4
6
8

10
12
14
16
18
20
22

Tr
ue

 la
be

l

Test

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20 22
Predicted label

0
2
4
6
8

10
12
14
16
18
20
22

Tr
ue

 la
be

l

Test

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Confusion matrices for the three models (OM1, 2, and 3, left-to-right) over the randomly selected test dataset.
Labels run from 0 = A major up to 11 = G# major, then 12 = A minor up to 23 = G# minor.
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Figure 4. Comparison of scores on training data between
models. Scores are defined as: 1=key correct, 0.5=perfect
5th off (either direction), 0.3=relative minor/major, 0.2=par-
allel minor/major, 0=other error.
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Figure 5. Comparison of scores on test data between mod-
els. Scores are defined as: 1=key correct, 0.5=perfect 5th
off (either direction), 0.3=relative minor/major, 0.2=parallel
minor/major, 0=other error.
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Figure 6. Comparison of OM1’s scores on test data broken
down by source dataset.
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Figure 7. Comparison of OM2’s scores on test data broken
down by source dataset.


