
Zapr Audio Fingerprinting
Harikrishnan Potty

AVP - DSP
Zapr Media Labs
Bangalore, India

Email: harikrishnan@zapr.in

Srikanth Konjeti
AVP - DSP

Zapr Media Labs
Bangalore, India

Email: srikanth@zapr.in

Abstract—The problem of audio fingerprinting translates to
finding the right piece of audio, given a noisy version of the
same. In this short paper we provide the outline of a noise robust
audio fingerprinting and matching algorithm based on the local
spectrogram energy peaks.

I. INTRODUCTION

The task of audio fingerprinting is to find the correct
piece of audio (also refereed to as the reference audio),
given a noisy version of the same (also refereed to as query
audio). The fingerprinting algorithm should be robust to noisy
environments, differences in the number of audio channels,
differences in audio encoding and should also be able to cater
to a wide variety of mobile phone microphones (assuming
that the query comes from a mobile phone, which is generally
the case).Also the query audio can be from any part of the
complete reference audio file.
In addition to it, the fingerprint representation should be as
unique and as compact as possible, allowing us to declare
match to a query file in real time.Some of the initial work of
audio fingerprinting can be found in [1],[2].
The Audio Fingerprinting and Matching algorithm outlined
here consists of two basic components. The first one is the
database builder which takes in a set of Reference (Clean)
audio files, fingerprints them and builds a database.

Fig. 1: Generalized Audio Fingerprinting

The Second part is the query matching stage which takes a
noisy query file, computes the fingerprint, matches the query
against the database and returns the correct match.

II. ALGORITHM OUTLINE

The algorithm that we employ is based on finding local
energy maximas in a spectrogram and performing combi-
natorial hashing as described by Wang[1]. The input audio
signal is downsampled to 8 KHz and is divided into frames of
length 512 samples with 50% overlap between the consecutive

frames. From each of the frames, we select energy peaks
which we believe are robust to signal degradation and combine
these points across multiple frames. These combination of
points across multiple signal frames are refereed to as audio
hashes.The Final fingerprint output that we obtain are these
hashes and the time in which they occur.

Fig. 2: Audio Fingerprinting algorithm

III. FINGERPRINT MATCHING

Once the query fingerprint is computed, a time aligned
matching is performed where the sequence of query hashes
in the fingerprint is matched against all the reference hashes.
The reference which matches the query with the hits more
than a threshold is declared as the match for that query.The
Offset is the delay of the query with the reference.

IV. IMPLEMENTATION

Both the Fingerprinting the matching algorithms are imple-
mented in CPP. The binaries are provided in the submission
directory. Two python scripts in accordance with the submis-
sion format are also provided to run the binaries.

V. FOLDER CONTENTS

The Submission Folder contains of the following pro-
grams/documents:

• Builder.py: Python script for constructing the database.
• Matcher.py: Python wrapper for invoking the matcher

binary on the query fingerprint files.
• Fingerprinting.py: Python wrapper for invoking the

fingerprinting binary on audio files.
• Indexer: CPP Binary for generating the audio hashes.
• Matcher: CPP Binary which performs the actual match-

ing.
• README.txt: A readme file which contains the details

on how to run the scripts, details regarding the necessary
command line arguments and details regarding the build
system for compiling the binaries.



REFERENCES

[1] A.Wang, The Shazam music recognition service, 48, Aug. 2006.
[2] J. Haitsma, T. Kalker, and J. Oostven Robust audio hashing for content

identification, in Procs. of the International Workshop on Content-Based
Multimedia Indexing, (Brescia, Italy), October 2001.


