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ABSTRACT

This paper summarizes our chord estimation submission
for the MIREX 2018 chord estimation challenge. It con-
tains an overview over the attempted baselines, the used
neural network architectures, a definition of the exact sub-
objectives we attempt to solve, and all methods used while
training like data preprocessing and data augmentation.

1. INTRODUCTION

The detection of a chord that sounds at a concrete time in a
song is a very important step for transcribing music. Even
musicians have a hard time doing this, for a machine this
is a very hard task as we can see for example in the results
of the last MIREX challenges. But nevertheless, automatic
chord detection with high precision is an extremely impor-
tant step towards automatic music transcription.

The best approaches for chord estimation mostly rely
on machine learning. But even considerably large neural
networks trained on large amounts of data admin room for
improvement, as we have seen from previous years. In the
following, we present a slightly different approach to get
better results.

2. RELATED WORK

A good overview about the current state-of-the-art in chord
estimation is given by the submissions of the four partici-
pating teams in the MIREX 2017 chord estimation chal-
lenge. Relatively good results, especially for that tasks
where only the root note, major and minor chords as well
as the bass note has to be estimated, were achieved by
Korzeniowski et al. [2]. They presented two approaches,
one was a fully convolutional neural network (CNN) which
was introduced in [4], the other was based on a Deep Chroma
Extractor introduced in [3]. For further information on the
topic we encourage you to go to the currently most recent
MIREX results page and have a look at the submissions 1 .

1 See http://www.music-ir.org/mirex/wiki/2017:
Audio_Chord_Estimation_Results.
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3. OBJECTIVES FOR CHORD ESTIMATION

In music, a chord is a harmonic set of pitches consisting
of two or more (usually three or more) notes that sound si-
multaneously. To uniquely describe such a chord (without
regard for enharmonic equality), three parts are needed as
described in the following.

3.1 Root Note

The root note describes the tonic note of that scale where
the chord notes originate in. It is the only property that
gives the absolute position of a chord and therefore essen-
tial for completely describing any chord. The class distri-
bution is displayed in Table 1

Note N C C# D D# E
[%] 4.79 10.66 4.03 11.61 5.32 10.49

F F# G G# A A# B
8.43 4.24 11.65 4.79 12.12 5.94 5.9

Table 1. The distribution of time spent on the root notes in
our data sets. N stands for None.

3.2 Chord Description

The chord description defines the spaces in semitones be-
tween the notes, which are responsible for the chords sound,
and also define the number of different tones the chord has.
There are for example the two mainly used chord types in
western music, major and minor chords, but there are also
more rarely used ones, like a dominant sevenths chord that
consists of four notes. By analyzing our training data we
have seen, that 68% of the time where a chord is sounding
(“no chord” times were omitted), it is a major chord. The
class distribution is displayed in Table 2

3.3 Inversion

The notes of a chord are not required to have the same or-
der with regard to their frequency. This results in different,
so called “inversions”, which can be described by a num-
ber that is the index of the note with the lowest frequency,
also called bass note. Our training data chords are approx-
imately 94% of the time without any inversion. The class
distribution is displayed in Table 3



Chord Description maj min dim aug
[%] 67.49 13.34 0.29 0.15

doms majs mins
8.38 2.89 7.44

Table 2. The percent of time spent with certain chord de-
scriptions in our data sets. The full name of the classes
is (in order): major, minor, diminished, augmented, domi-
nant seventh, major seventh, minor seventh

Inversion N First Second Third
[%] 93.98 2.22 2.59 1.21

Table 3. The percent of time spent on certain inversions in
our data sets. N stands for no inversion.

3.4 Notation

To uniquely notate (without regard for enharmonic equali-
ties) such chords, there exist multiple different approaches.
MIREX decided to use the notation introduced by Harte et
al. in [1], which is popular in western countries. This no-
tation is built on the previously described properties. We
use it to structure the chord transcription task into multiple
subtasks, as described in the following section.

3.5 Stages of the MIREX chord estimation challenge

The MIREX chord estimation challenge is divided into sev-
eral stages with increasing complexity:

1. root note only: The most basic task is to only es-
timate the root note of a chord. If the root note is
wrong, everything else in the chord estimation will
be wrong too.

2. major minor: The root note including a distinction
between major and minor chords is taken into ac-
count. All other chord descriptions are ignored.

3. major minor bass: All previous things including
the bass note (or inversion) are considered. This
means this stage is the first where full chord defi-
nitions are necessary.

4. sevenths: In this stage, also sevenths chords are taken
into account, without the inversions.

5. sevenths bass: The final and most complex stage
includes the root note, major, minor, and sevenths
chords including their bass note (inversion).

4. ROBUST BASELINE APPROACHES FOR ROOT
NOTE ESTIMATION

The first task tackled was the root note estimation. It is
the essential part of the whole chord estimation process,
because chords with wrong root note are counted as wrong
in every stage.

For data preprocessing, we re-sampled the audio data to
44100Hz and calculated the STFT from it with a window-
size of 2048 and a hop-size of 1024. This spectrogram
is then logarithmically divided into 96 chroma bins. Then,
always two bins are combined together, to get 48 bins. This
summing up of the bins is done in a way, so that the result
are not usual 48 chroma bins, but shifted by half of a bin.
This procedure can be seen in Figure 1.

Figure 1. The graphical explanation of shifted chroma
bins. The mid between two semitones is the center of a
shifted chroma bin, while usual chroma bins have an edge
there.

To get a robust baseline for the root note estimation, we
started by fitting a random forest, that labels short snip-
pets of audio with one of the twelve possible semitones or
the “no chord” label. For training this small random for-
est (consisting of 100 decision trees), we used 10% of the
songs in our training set, chosen uniformly at random.

We also tried a different approach, by creating 13 dif-
ferent random forest regressors (one for each semitone and
one for “no chord”) that estimate the probability, that a
short snippet of audio has one of the semitones as root note.
The final output is the representing label of the forest that
gives the highest probability. These forests, with 30 deci-
sion trees each, were trained on 5% of randomly chosen
songs from our training set.

The results of both approaches can be found in Table 9.
As can be seen in the results, these two baselines were very
low. This could have a wide range of different reasons,
but the two most probable are, we only used a very small
part of the training set and no data augmentation which
leads to a very poor generalization. The second reason is
the lack of complexity of the approaches, the complexity
of the problem is much higher than the complexity of the
model class. Therefore, we were forced to use higher level
machine learning techniques as described in the following.



5. CNN CHORD RECOGNITION

This section covers our adaptations to the fully convolu-
tional neural network introduced in [4]. We decided on
using the CNN approach instead of the DeepChormaEsti-
mator because its deeper design allows for more complex
representations and it is therefore more likely to adapt to
the changes we introduce.

5.1 Preprocessing

The first step of the feature processing pipeline transforms
the audio into a time-frequency representation that serves
as the input for the CNN. All audio data is re-sampled to
44100Hz. We use an STFT with a hop-size of 4410 and a
window-size of 8192, so that we get exactly ten frames per
second. This STFT will then be restricted to a frequency
range of 60Hz - 2600Hz and converted into a logarithmi-
cally scaled magnitude spectrogram Lwith 113 bins, using
the following equation:

L = log(1 + STFT ×B∆)

The matrix B∆ is our filter bank which maps the previ-
ously specified frequency range onto the 113, exponen-
tially spaced, bins. This filter bank can theoretically be
constructed using any number as the base of the exponent,
but to make the process of data augmentation more simple
we will use 2 as the base. The input for the CNN was then
composed using a small fragment of this time-frequency
signal. The input matrix Xi represents the audio file at
time i× hop size

sample rate and is composed using:

Xi = [Li−C , . . . , Li, . . . , Li+C ]

For our purposes we chose C = 11. If the indices were out
of the valid range we used zero padding.

5.2 CNN architecture

We used the same basic approach as Korzeniowski et al.
in their submission from 2017 [2]. The main disadvantage
of this approach is that it is restricted to the subset of the
25 most likely chords. Therefore, we decided to introduce
a split into the three objectives that are described in Sec-
tion 3. We think that the split into these objectives makes
sense from a music theoretical point of view, and we hope
that it will lead to better generalization, as there is no re-
striction of possible classes necessary. The general archi-
tecture of our Neural Network is described in Figure 2.

5.3 Data augmentation

Korzeniowski et al. state in [4] that this network tends to
overfit, therefore good data augmentation methods are es-
sential. Korzeniowski et. al. used two data augmentation
methods, although they didn’t specify how they did it ex-
actly, we tried our best to recreate them based on their de-
scription.

Figure 2. The general overview over out proposed CNN
architecture. It is separated in 5 parts (A-E) for more de-
tails regarding the implementation look at the correspond-
ing layouts in Table 4-Table 8.

Layer Type Parameters Output Size
Input 113× 23
Conv-ReLU 32× 3× 3 32× 111× 21
Conv-ReLU 32× 3× 3 32× 109× 19
Conv-ReLU 32× 3× 3 32× 107× 17
Conv-ReLU 32× 3× 3 32× 105× 15
Pool-Max 2× 1 32× 52× 15

Conv-ReLU 64× 3× 3 64× 50× 13
Conv-ReLU 64× 3× 3 64× 48× 11
Pool-Max 2× 1 64× 24× 11

Conv-ReLU 128× 12× 9 128× 13× 3

Table 4. Part A of our proposed CNN architecture for
multi objective chord estimation, including activations and
kernel sizes. There was no padding used and the stride
was 1 for each layer. Batch normalization is performed af-
ter each convolution layer. Dropout with probability 0.5 is
applied after horizontal rules in the table. This is the com-
mon feature extraction part of our network and is shared
between all objectives

Layer Type Parameters Output Size
Conv-ReLU 128× 3× 3 128× 13× 3
Conv-ReLU 64× 3× 3 64× 13× 3
Conv-Linear nroot note × 1× 1 nroot note × 13× 3
Pool-Avg 13× 3 nroot note × 1× 1
Softmax nroot note

Table 5. Part B of our proposed CNN architecture for multi
objective chord estimation, including activations and ker-
nel sizes. There was padding used and the stride was 1 for
each layer. Batch normalization is performed after each
convolution layer. This is the part of the network that fo-
cuses on getting the root note information out of the data.
nroot note denotes the amount of different root note classes
which is 13 (12 semitones + no tone class).



Layer Type Parameters Output Size
Conv-ReLU 128× 3× 3 128× 13× 3
Conv-ReLU 128× 3× 3 128× 13× 3

Table 6. Part C of our proposed CNN architecture for multi
objective chord estimation, including activations and ker-
nel sizes. There was padding used and the stride was 1 for
each layer. Batch normalization is performed after each
convolution layer. This part is the common feature adap-
tion for the tasks chord description and inversion.

Layer Type Parameters Output Size
Conv-ReLU 128× 3× 3 128× 13× 3
Conv-ReLU 64× 3× 3 64× 13× 3
Conv-Linear nchord desc × 1× 1 nchord desc × 13× 3
Pool-Avg 13× 3 nchord desc × 1× 1
Softmax nchord desc

Table 7. Part D of our proposed CNN architecture for
multi objective chord estimation, including activations and
kernel sizes. There was padding used and the stride was
1 for each layer. Batch normalization is performed after
each convolution layer. This is the part of the network that
focuses on getting the chord description out of the data.
nchord desc denotes the amount of different chord descrip-
tion classes which is 7.

Layer Type Parameters Output Size
Conv-ReLU 128× 3× 3 128× 13× 3
Conv-ReLU 64× 3× 3 64× 13× 3
Conv-Linear ninversion × 1× 1 ninversion × 13× 3
Pool-Avg 13× 3 ninversion × 1× 1
Softmax ninversion

Table 8. Part E of our proposed CNN architecture for multi
objective chord estimation, including activations and ker-
nel sizes. There was padding used and the stride was 1 for
each layer. Batch normalization is performed after each
convolution layer. This is the part of the network that fo-
cuses on getting the inversion information out of the data.
ninversion denotes the amount of different chord descrip-
tion classes which is 4 (3 different kinds of inversion + no
inversion).

5.3.1 Note Basics

First, lets cover how the frequency and the tone of a note
correlate, to better understand how these data augmenta-
tion methods work. If you know the octave and the tone
you want to replicate, you can calculate the frequency of
the new tone with the following formula:

fnote = fbase × 2ˆ(δoctave +
δsemitone

12
)

where fbase is the frequency of the base tone (mainly 440Hz
for base tone a′ is used), δoctave is the difference in octaves
between the base note and the new note, and δsemitone is
the difference in semitones. Please note that one octave
difference also equals a difference of 12 semitones, but it
is uncommon to think of it as such. This means that notes
are exponentially spaced in frequency space and brings us
back to our filter bank. Since we used exponentially spaced
bins with the same base as the tones, the distance between
two (semi-)tones is linear in our feature space.

∆ = ld(f1)− ld(f2)

= ld(fbase × 2ˆ(o1 +
s1

12
))− ld(fbase × 2ˆ(o2 +

s2

12
))

= ld(fbase) + o1 +
s1

12
− ld(fbase)− o2−

s2

12

= o1 +
s1

12
− o2− s2

12

= o1− o2 +
s1− s2

12

= δo +
δs
12

5.3.2 Pitch shift

To get more variety in the training data we shift the pitch
of our samples by up to 4 semitones in either direction and
adjust the label accordingly. A correct pitch shift is impos-
sible for a magnitude spectrum, since that would require
phase information. Hence, we approximate this by shifting
the contents of the logarithmic frequency bins by a certain
amount of bins. The amount of octaves covered by our
spectrum is ld(2600) − ld(60) = 5.437 where ld is the
logarithm with base 2. This means we have 5.437× 12 =
65.249 semitones in our spectrum and shifting by 1 bin
represents a shift of 65.249

113 = 0.577 semitones. So, we can
shift by bnshift

0.577 c bins. Finally, using the same algorithm
we use for detuning described in Section 5.3.3, we can
compensate for the error errshift = nshift − bnshift

0.577 c ×
0.577 we made by rounding, this also guarantees that
|errshift| < 0.577.

5.3.3 Detuning

To simulate an improperly tuned instrument, an imperfect
singer or musical accents like vibrato, we simulate a pitch
shift of less then 0.4 semitones in either direction while
leaving the label unchanged. This is done by calculating
the overlap of the shifted bin and the neighboring bin and
then just assigning it based on that percentage. As an ex-
ample consider a shift by +0.2885, which represents a shift



App R RM RMB RMS RMSB
RF-C 48.42 - - - -
RF-R 36.84 - - - -
KBK2 86.30 86.02 83.12 61.12 58.75
CNN 82.38 TBD TBD TBD TBD

Table 9. Accuracy for the MIREX sub-tasks ((R) root note,
(M) major and minor chords, (B) bass note, and (S) Sev-
enths) of our approaches (RF-C) Random Forest Classi-
fier, (RF-R) Random Forest Regressors, and (CNN) Con-
volutional Neural Network with unseen data. As reference
value (KBK2) the CNN-CRF from [2] is used. This table
will be updated based on the results on the MIREX2018
chord estimation challenge once we get the results

of half a bin or mathematically:

Lj
i =

0.2885

0.577
× Lj−1

i +

(
1− 0.2885

0.577

)
× Lj

i

This can be efficiently computed using 1-D convolution.
This formula is only correct for shifts smaller than one bin.

5.4 Training

The neural network was trained on the following data sets:
Beatles, Queen and Zweieck 2 , Robbie Williams 3 , RWC
Popular 4 , and the public part of McGill Billboard 5 . We
used a mini-batch size of 512 and the Adam optimizer. Ad-
ditionally every convolutional layer in the network had a
L2 weight penalty with λ = 10−7. For testing and pa-
rameter search we separated all songs from all our datasets
into 8 approximately equally sized folds for 8-Fold cross-
validation. While training our batches were composed of
random samples from randomly drawn songs from the re-
spective datasets.

6. RESULTS

In Table 9 we present the results of our approaches tested
with unseen data from our training set. When we get the
actual results from the MIREX validation, we will replace
them.

The calculation of these values is given by MIREX and
can be seen in [5]. The formula for calculation depend-
ing on the time where the estimated chord labels map the
ground truth or not is as follows:

CSR =
DurationWhereAnnotationEqualsEstimation

TotalDurationOfAnnotatedSegments

Sadly we were not able to beat last years top submission
in the root note category, but we expected that, since there

2 http://isophonics.net/datasets
3 https://www.researchgate.net/publication/

260399240_Chord_and_Harmony_annotations_of_the_
first_five_albums_by_Robbie_Williams

4 https://staff.aist.go.jp/m.goto/RWC-MDB/ and
https://github.com/tmc323/Chord-Annotations

5 http://ddmal.music.mcgill.ca/research/
billboard

are a lot of little tricks and advanced methods that could
be changed that are already part of previous submissions,
that we didn’t add. Methods like sequence decoding using
an HMM or CRF, or heuristic methods like snapping chord
changes to certain events (beats, note onsets, etc.).

7. CONCLUSION

During our testing procedures for the fully CNN approach
described in Section 5 we discovered that the data aug-
mentation methods described by Korzeniowski and Wid-
mer in [4] had little impact on our results, less than the dif-
ferences between two consecutive runs which only differ
in the sequence of random mini-batches that they receive.
Sadly the only thing Korzeniowski and Widmer wrote re-
garding the data augmentation used in their approach is
that it was crucial to prevent overfitting. Even though we
have no concrete numbers this leads us to believe that the
approach to separate chord estimation into the three ob-
jectives described in Section 3 was an important factor in
preventing overfitting. In conclusion splitting a task into
multiple meaningful sub objectives can lead to less overfit-
ting.
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