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ABSTRACT

Melody extraction is arguably one of the most challenging
and potentially rewarding problems in Music Information
Retrieval. It is melody that we are likely to recall after
listening to a song and so it is one of the most relevant as-
pects of music. However the presence of accompaniment
in songs makes the task hard to address using rule-based
methods. During the last years data-driven methods based
on deep learning started to outperform methods tradition-
ally used in the field. In this paper we continue in these ef-
forts and propose a new method for melody extraction. An
architecture called Harmonic Convolutional Neural Net-
work, based on a modification of convolutional neural net-
works to better capture harmonically related information
in an input spectrogram with logarithmic frequency axis,
was able to achieve state-of-the-art performance on most
publicly available melody datasets.

1. INTRODUCTION

In the recent years the approaches to melody extraction
have shifted to the use of deep learning (DL). These new
methods transform the input signal to a time-frequency
representation and then use DL techniques to sequentially
process the transformed input. The result is a saliency
map from which they select the melody f0 trajectory and
determine voicing. Among new DL-based works we can
find variety of approaches that try new signal transforma-
tions or network topologies; on the other hand the building
blocks out of which these systems are built are standard
(fully connected layers, CNNs and RNNs) [1, 3, 7, 10]. In
this paper we propose a new kind of CNN layer specialized
for processing harmonic signals in audio.

1

1.1 The use of CNNs for Melody Extraction

A harmonic signal is usually comprised of a fundamental
frequency and overtones that are spaced apart by constant
ratios. These features are therefore non-local on a input

1 For the source code please see the accompanying repository at
https://github.com/kukas/music-transcription
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Figure 1. Comparison of receptive fields of standard CNN
and HCNN on a CQT spectrogram.

time-frequency representation. In practice CNN kernels
are usually small (previous works use usually a size of a
semitone in the frequency axis [1, 3]) and therefore can-
not process the whole harmonic structure in one layer. To
make up for this, existing works also include a final "big"
convolutional layer to "capture relationships between fre-
quency content within a octave" [3]. This is only a partial
solution because only one layer of the whole network can
exploit the defining characteristic of a harmonic signal.

2. METHOD

Our proposed Harmonic Convolutional Neural Network
(HCNN) overcomes the limitation outlined in the Introduc-
tion. The convolutional layer in our network is able to use
all the relevant harmonic information in each layer as illus-
trated in Figure 1.

The architecture has the standard overall structure of
processing an input through a series of convolutional lay-
ers. We use only convolutions with 1x1 stride and no pool-
ing layers so that the input and output sizes stay the same
throughout the whole network. The output of each layer
is therefore a 3D matrix with channel, frequency and time
axes of constant dimensions. Crucially before each convo-
lutional layer we add an additional transformation of the
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Figure 2. Diagram of the input transformation for convo-
lution layers.

input (see Figure 2).
The transformation first creates copies of the input and

stacks them in the channel axis, so that there are several
identical copies of the input matrix. We then shift those
copies relative to the original in the frequency axis so
that the information about harmonically related peaks are
positioned "above" 2 the original fundamental frequency.
Since the input is a log-frequency spectrogram, the offsets
are constant. For example in our case the shift of 60 bins
corresponds to an octave (second harmonic frequency) and
the shift of 60 + 35 bins corresponds to an octave and a
fifth (third harmonic frequency). In this way we can posi-
tion as many harmonically related bins on top of each other
as needed.

In addition to the shift to corresponding overtones, we
also add copies shifted in the opposite direction. This al-
lows the convolution to access corresponding fundamental
frequency values when processing some of the overtones
of a harmonic signal. We call those negative offsets "un-
dertones".

This transformed input is then fed into the next convo-
lutional layer. Since the convolutional filter has the access
to all channels, it follows that it has access to the provided
harmonically related information for every time-frequency
position in the matrix.

2.1 Input representation

The input is a single CQT spectrogram with 5 bins per
semitone and 540 bins in total (spanning the range from
C1 to C9). Our hop size is 256

44100 ≈ 5.8ms. Note that
CQT has logarithmically spaced frequency bins, which is
an essential property for our method to work because it im-
plies that distances between the harmonics are independent

2 "above" meant in the channel axis
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Figure 3. Overall HCNN architecture. The input spectro-
gram is 10 frames long in this figure. The actual number of
frames however depends on the selected architecture (see
Figure 4).
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Figure 4. Two tested architectures.

on the fundamental frequency of a signal. By applying the
harmonic-alignment transformation explained in the previ-
ous section to this CQT input, we create a 3-dimensional
array that closely resembles HCQT input representation
used in [3] without the overhead of computing each CQT
spectrogram separately. This allows us to cheaply increase
the number of HCQT harmonics. We therefore create a
HCQT representation by stacking 8 copies shifted by over-
tone offsets and 8 copies shifted by undertone offsets. Fi-
nally we crop the HCQT to match the output dimensions
(360 bins, range from C1 to C6).

2.2 Output representation

The output representation matches the cropped input fre-
quency and time dimensions. In each timeframe the
ground truth is represented as a gaussian with mean in
the reference f0 and standard deviation of 18 cents. Un-
voiced frames are represented as zero vectors. Voicing
output is obtained by thresholding the maximum value of
each frame using a best performing threshold for the vali-
dation dataset. This representation is inspired by CREPE
monopitch tracker [6], the std. dev. was finetuned for our
purposes.

2.3 Architecture

The design of the rest of the network either draws from
standard deep learning practices and from Bittner et al. [3]



Method Parameters

SAL —
BIT 406 253
BAS 307 199

HCNN noctx 24 961
HCNN ctx 19 513

Table 1. Comparison of the number of model parameters.

(see Figure 3). The input HCQT is processed using a stack
of convolution blocks. The output is passed through a
1x1 convolution to shrink the number of channels and cre-
ate a salience representation. The model is trained using
cross entropy loss using Adam optimizer with learning rate
0.001 and 16 samples per batch.

A convolution block consists of a convolutional layer
with 16 filters and ReLU activation, followed by a dropout
layer (with dropout probability of 0.3) and the harmonic
alignment transformation. We also add a residual connec-
tion [5] as it improves the model performance with no sig-
nificant additional overhead.

We test two architectures, HCNN noctx and HCNN ctx.
HCNN noctx consists of 8 convolution blocks that contain
convolutional layers with kernel size 3x1 and 12 channels.
In other words the convolutions operate only in the fre-
quency dimension and thus the estimation is based only on
one frame of the input spectrogram (≈ 5.8ms of audio).
The harmonic aligment transformation for this architec-
ture includes three undertones and four overtones (chan-
nels shifted by -24 -19, -12, 0, +12, +19, +24 and +27.8
semitones).

The HCNN ctx architecture consists of 4 convolution
blocks. The first block with kernel size 3x1 and the rest
with sizes 3x3. Additionaly we set an increasing dilation
rate in the last three convolution blocks (along the lines of
the WaveNet architecture [13]). In this way we achieve a
receptive field of ≈ 162.4ms using only three layers that
operate also in the time dimension. Note that this result-
ing receptive field is comparable to Bittner et al. [3]. The
harmonic aligment transformation for this architecture in-
cludes five undertones and five overtones.

3. EXPERIMENTS

3.1 Datasets

For training and validation, we use MedleyDB [2]. We use
the same dataset split as in [1,3]. This has the advantage of
being able to directly compare the results of the methods
on the testing split.

Besides the MedleyDB testing set, for testing we also
include ADC04 dataset, MIREX05 training set 3 , Orchset
[4], a subset of MDB-melody-synth [11] and a subset of
WJAZZD [9]. 4

3 We downloaded ADC04 and MIREX05 datasets from https://
labrosa.ee.columbia.edu/projects/melody/

4 For the complete list of selected testing tracks please
see the repository at https://github.com/kukas/

0.0 0.2 0.4 0.6 0.8 1.0
Score

OA

RPA

RCA

VR

VFA

Method
Salamon
Bittner
Basaran
HCNN NOCTX
HCNN CTX

Figure 5. Evaluation metrics on MedleyDB testing split
for SAL, BIT, BAS, HCNN noctx and HCNN ctx.

Method ADC04
MDB-m-s

test
MIREX05

train.
MDB

test
ORCH-

SET
WJazzD

test

SAL 0.714 0.527 0.715 0.519 0.235 0.667
BIT 0.716 0.633 0.702 0.611 0.407 0.692
BAS 0.669 0.689 0.734 0.640 0.483 0.700

HCNN
noctx 0.735 0.636 0.728 0.645 0.457 0.714
HCNN
ctx 0.746 0.637 0.704 0.646 0.525 0.711

Table 2. Overall Accuracy of the selected methods. High-
lighted values are the highest across the dataset.

3.2 Methodology

For evaluation, we use the melody extraction evaluation
functions from the library mir_eval 5 . These include
the standard metrics used in the context of Melody Ex-
traction. We compare the output of our models "HCNN
noctx" (HCNN with minimal audio context) and "HCNN
ctx" (HCNN with broader audio context) with state-of-the-
art baselines: "SAL" [12], "BIT" [3] and "BAS" [1]. In
case of BIT and BAS, we ran the algorithms using the
source code obtained from the links provided in the pa-
pers keeping default parameters. For the SAL algorithm
we used the implementation in Essentia library 6 . All the
output melody estimates are included in the repository.

3.3 Results

We present a detailed comparison of the results of the se-
lected methods on MedleyDB testing split on Figure 5 and
a overview of Overall Accuracy on six different datasets
in Table 2. Our methods outperform all selected baselines
on four out of six testing datasets. Compared to the most
similar method of Bittner et al. [3] we achieve better re-
sults on all datasets on the Overall Accuracy (OA) metric.
Basaran et al. [1], who additionally use a recurrent layer on

music-transcription.
5 https://github.com/craffel/mir_eval
6 https://essentia.upf.edu



top of the convolutional stack, therefore giving the network
an advantage over the HCNN and Bittner by allowing it to
learn also how melody works in time, achieved better re-
sults on two datasets. Compared to the methods based on
deep learning (Bittner and Basaran), our model uses be-
tween 10 and 20 times less parameters (see Table 1).

Qualitatively we see an expected difference between the
outputs of HCNN noctx, HCNN ctx and BAS. The results
of HCNN noctx are noisier compared to HCNN ctx and
BAS, since one audio input frame is only 5.8ms long. It
is impossible for this method to take into account any mu-
sical context even within one continuous note. For pieces
with higher polyphony, the output of HCNN noctx there-
fore jumps between possible melody f0 candidates.

The results of HCNN ctx and Bittner are highly cor-
related, from a closer qualitative inspection we conclude
that the performance difference can be attributed to a bet-
ter generalization on instrument classes underrepresented
in the training dataset and better learning of the instrument
priorities.

4. CONCLUSION

In this paper we presented a novel and general way to
adapt ordinary CNN-based networks for processing har-
monic audio signals. We showed that using HCNN layers
is effective for the Melody Extraction task and yields state-
of-the-art results while dramatically reducing the needed
number of parameters of the model. Based on these results
we believe that the architecture has a potential in other re-
lated tasks such as multi-f0 tracking.

Possible improvements include data augmentation (see
[8] for an interesting new data augmentation technique de-
signed for audio data) and temporal smoothing of the out-
put using HMM, LSTM or other techniques like in Basaran
et al. [1]. Other potential improvements can be done by al-
tering the input representation or the model architecture.
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