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ABSTRACT

We participate in this year’s MIREX (2019) Audio-
to-Lyrics Challenge using a traditional forced-alignment
technique which adapts a triphone GMM-HMM model
trained using context-dependent Singer-Adaptive features
on a large open-source Karaoke corpus that has sentence-
level annotations provided. Based on this pretrained sys-
tem, we apply forced alignment to align given lyrics in text
format with the music signal. This is an initial system we
have proposed for the audio-to-lyrics alignment task. This
extended abstract gives the details of our system and con-
cludes with the possible solutions and ideas for achieving
a better alignment system.

1. INTRODUCTION

Text alignment to its corresponding verbal content in au-
dio recordings is a crucial step for achieving robust perfor-
mances in most of the state-of-the-art Automatic Speech
Recognition (ASR) systems. In musical domain, the task
of text-to-audio alignment is mostly referred as ’Lyrics-to-
Audio Alignment’, where most of the prior research ap-
plied similar techniques to that of speech domain [7] [4]
[3].

In our work, we also take on the standard approach
of aligning text (or the lyrics) to audio, which employs
a context-aware GMM-HMM acoustic phone model that
are trained on singer adaptive features [9]. For training,
we have used a recently published open-source dataset re-
leased by Smule 1 , the Sing 300x30x3 corpus, which con-
sists of solo-singing karaoke recordings of 300 unique ar-
rangements collected from 30 different countries [1]. In
order to use word-level data for training phone states, we
used the CMU English Pronunciation Dictionary [13] to
represent words in sequences of phonemes. A language
model trained on lyrics from the Sing 300x30x3 corpus is
used for building n-gram word models. For building the
speech (lyrics) recognizer, we use Weighted Finite State
Transducers (WFST) [8] combining the lexicon, the acous-
tic and the language models. Finally, we tune some of the
hyperparameters that show better performance for our task.

1 http://www.smule.com
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This is an extended abstract for the system submitted
for "MIREX 2019 Audio-to-Lyrics Alignment" challenge
and is structured as follows: First, we introduce the train-
ing dataset used to build the acoustic and the language
model. Then we explain the details of the overall pipeline
of our alignment system. We, then, conclude with final re-
marks with a mention of the possible future directions our
research would take in order to achieve an improved align-
ment performance in music recordings with lyrics.

2. DATASET

The DAMP Sing! 300x30x2 corpus [1] is the latest-by-
the-date dataset made publicly available for research by
Smule. This dataset is a better suited one compared to ear-
lier versions of the DAMP releases due to several factors.
First of all, Sing! 300x30x2 provides over 18,676 arrange-
ments of 5,690 popular songs performed by 13,154 per-
formers which has equal number of recordings per gender
and country of origin of the performer. This property of
this dataset makes it a good balanced set for training. Sec-
ondly, the recordings in the dataset are chosen according
to the votes cast by the users of Smule app which provides
us the assumption of recordings being at least moderately
good quality. Moreover, the dataset has prompt-level time
annotations for the utterances to be sung. For utilization
we have used the preprocessed version of the text data [2].

3. METHOD

The alignment of the lyrics to music recordings is per-
formed using a forced-alignment strategy which requires a
pretrained speech recognizer. In our system, we use Kaldi
ASR Toolkit [10] for building the automatic speech rec-
ognizer, which is an open-source toolkit for speech recog-
nition which has numerous features and functions that are
used in many state-of-the-art ASR systems.

3.1 Pretrained Speech Recognizer

We trained an automatic speech recognizer following
the traditional approach of building context aware phone
acoustic models based on a GMM-HMM architecture. The
fundamental idea behind an automatic speech recognition
system is to create a model that successfully predicts the
sequence of words given an audio recording of an utter-
ance. If the sequence of words are defined as,

W = W1W2...WN

and the feature vectors,



X= X1X2...XN

then the probability of predicted sequence of words can
be defined as;

Ŵ = argmax
w

P (W|X) = argmax
w

P (X|W)

P (X)
(1)

= argmax
w

P (W)P (X|W) (2)

According to the probabilistic model in Equation 1,
P (W) is learned as a language model trained on text and
P (X|W) is the acoustic model which can be learned via
supervised learning using labeled audio data.

The speech recognition system we inherit uses
Weighted Finite State Transducers (WFST) [8] for decod-
ing state transition probabilities to sequences of phoneme
/ word symbols. WFST uses the composition of the lan-
guage, lexicon and acoustic components when building the
decoding graph.

3.1.1 Acoustic Model

We begin with training a monophone GMM-HMM acous-
tic model using 13 MFCC features using a 25 milliseconds
of window size and 10 milliseconds of hop size, then apply
global cepstral mean and variance normalization (CMVN).
To include context dependency on the acoustic models, we
retrain the model using the delta and delta-delta features,
which models the phones as ’triphones’. Dimensional-
ity reduction is then applied to feature vectors using Lin-
ear Discriminant Analysis (LDA). We then apply ’feature-
space Maximum Linear Likelihood Regression’ (fMLLR)
[9] transformation to the input features, adapting the GMM
parameters for obtaining singer-independent representa-
tion of the feature space. Until this stage, the training data
used was a small portion of the entire dataset, which con-
sists of the recordings that are obtained from only native-
English speaking countries in the dataset (Great Britain,
the United States and Australia). We have used such strat-
egy for saving training time. After building context aware
triphone GMM-HMM models, we obtain alignments for
the entire datasets, which are required for GMM-HMM
training, then retrained the acoustic model on the entire
dataset (including English recordings from 30 countries).
In our experiments, we have seen this way of training has
similar, even slightly better performance than training the
system on the entire training set from the beginning.

3.1.2 Language Model

The language model is built on the corpus that consists of
the lyrics of the songs that are in the DSing! dataset. We
have followed similar data clean-up strategies with that
of [2]. Some of these strategies include removal of non-
ASCII characters and non-lyrics words (such as ‘verse’
or ‘chorus’, etc.). We corrected the spelling of certain
words in the raw lyrics data that involve repeated vow-
els indicating a sustain on the corresponding syllable (e.g.
‘YEEEEAAAAAH’ to ‘YEAH’). Numbers are discarded
if they are represented as digits. As a result, we obtain
1,747,287 lyrics lines and 91,654 unique words as the text

data. We have built a 3-gram maximum entropy Language
Model (MaxEnt LM) [6] for our speech recognizer. In gen-
eral, 4-gram models outperform 3-gram models, yet we
have observed the opposite in our triphone GMM-HMM
model word error rate (WER) results. We have built the
maximum entropy LM using SRILM toolkit [12].

3.1.3 Lexicon

In our alignment system, we use a pretrained triphone
acoustic model to predict the sequence of frame-level
words and consequently get time alignments. Since the
end goal is to perform alignment on the word-level, instead
of phoneme-level, a linguistically informed mapping of
words to their phonemic representation is required. Such
mapping is commonly referred as the (pronunciation) lexi-
con. In our system, we used the CMU Sphinx English Pro-
nunciation Dictionary [13] as the lexicon for decomposing
words into phonemes.

3.2 Alignment

The alignment of phonemes to the audio signal is per-
formed via a ‘forced alignment’ method. Forced align-
ment is the procedure of finding the best path from a se-
quences of target events that minimizes the overall cost. In
our system, the phoneme transition probabilities are esti-
mated after training the HMM acoustic states in the speech
recognizer described above. We, then, use the Viterbi de-
coding algorithm for obtaining the most probable chain of
phonemes by matching the transition probabilities with the
acoustic features extracted from the audio frames. The
Viterbi algorithm uses the beam search algorithm for find-
ing the best path, where low probability phone occurrences
are pruned to avoid accumulated alignment errors and for
memory efficiency.

Beam search method is usually applied in shorter se-
quences for the ASR task. Typically, a common value for
the number of beams varies between 8 to 20 depending
on the task and the data. We had to modify this value
for own task, due to the average length of audio files in
the MIREX evaluation sets. The audio recordings in the
dataset are mentioned to have lengths of 4-5 minutes on
average. Using the smaller values for the beam search, our
speech recognizer fails to align given text to the entire au-
dio recording. For this reason, we have tried to use larger
beam lengths. For the initial search, we use a beam length
of 500, and retry beam length of 1000 in case the former
value fails. Even though using larger beam lengths slows
down the alignment procedure, it can achieve alignments
on the entire audio recordings.

In the speech recognizer, silence segments ‘<SIL>’ are
included in the class set representing a ’silence’ phone.
Kaldi ASR Toolkit involves an attribute (‘boost-silence’)
that parametrizes the weight assigned to the silence phone.
In our experiments, we have observed that reducing the this
parameter (from 1 to 0.17) helped aligning different musi-
cal structures of the songs (verses, choruses) separately,
resulting in less accumulated alignment errors.



Figure 1. The overall lyrics-to-audio alignment system. The excerpt is taken from the Song ‘Umbrella - Rihanna’

The CMU Pronunciation Dictionary decomposes words
in the sequences of phonemes where each phoneme label
contains a position suffix which indicates the position of
the phoneme with respect to the corresponding word. Ac-
cording to this representation, if a phoneme label has a ‘
_B ’ suffix, it means that the phoneme is the beginning
of the word, whereas ‘ _I ’ represents an intermediate
phoneme and ‘ _E ’, the ending phoneme of the word and
‘ _S ’ a standalone phoneme. When converting phonetic
alignments into word-level alignments we have exploited
these suffixes to determine the borders of the words.

In Figure 1, the overall system is depicted as a block
diagram and the output alignments are shown on the corre-
sponding audio segment * (footnote for sonic visualizer).
Note that, even though the training of acoustic models is
done on monophonic singing voice recordings, the align-
ment below is obtained on polyphonic music.

4. FUTURE WORK & DISCUSSIONS

The lyrics alignment output seen in Figure 1 shows that
our GMM-HMM based system does not perform horrible
even in the case of long polyphonic audio files. However,
it is also clear that not all the word alignments are perfect.
Moreover, there are accumulated misalignments when the
results on the entire song is investigated. In this section, we
scrutinize the cause of these misalignments and propose
possible solutions for an improved system.

There are errors in regions when there are no vocals
present but only the accompaniment. Since the GMM-
HMM model is trained on monophonic recordings, the
system models non-vocal regions as silence regions which
is not the case in polyphonic music recordings. Further-
more, the alignment performance gets lower as the length
of the audio exceeds few minutes. To overcome both of
these issues, there are few strategies that can be applied to

improve the alignments. Forced alignment performs well
for shorter utterances, hence automatically segmenting the
audio into shorter segments would help achieving an im-
proved performance. The segmentation can be done using
music structural segmentation and then matching the cor-
responding lyrics for each part in the song (verse, chorus,
bridge, etc.) It is also possible to segment the audio ex-
cerpts based on vocal presence. For that ‘Vocal Activity
Detection (VAD)’ methods can be exploited. ‘Source Sep-
aration (SS)’ could be applied and then segments would be
obtained based on silence. Overall, the alignment perfor-
mance can boost on source separated vocal signals.

Another possibility for an improved alignment system
is to build a better automatic speech recognizer. The
phoneme transition probabilities can be learned using Deep
Neural Networks (DNN) instead of GMMs in building the
acoustic model, which forms the basis of most of the state-
of-the-art ASR systems. Additionally, a more comprehen-
sive Language Model can be learned using a bigger corpus.
For instance, crawling web to retrieve all the lyrics (in En-
glish) available online might be used as the training text
corpus. In our experiments, we have seen that not all the
words in lyrics of popular songs exist in our lexicon for
training the LM and the pronunciation dictionary. For this
reason, a strategy needs to be developed to include those
words that do not exist in the pronunciation dictionary.
Last but not least, the pronunciation dictionary needs to be
modified in order to take different pronunciations of words
in singing into account. This is also a necessary step for
a better phoneme duration modeling in singing. In [5], the
authors a strategy to the lexicon where the vowels are repli-
cated in pronunciation considering that vowels and voiced
phonemes are pronounced longer in singing [11].

In conclusion, we have presented our automatic lyrics-
to-audio alignment system that we have submitted for the
MIREX 2019: Audio-to-Lyrics Alignment Challenge. We



have given the details of training and alignment proce-
dures. Finally, we mention the possible strategies we plane
to take on for boosting the performance of our system.
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