
DISCRIMINATING SYMBOLIC CONTINUATIONS WITH GENDETECT

Jeff Ens
Simon Fraser University

jeffe@sfu.ca

Philippe Pasquier
Simon Fraser University
pasquier@sfu.ca

ABSTRACT

We describe GenDetect, an algorithm that was submit-
ted to the 2019 MIREX Patterns for Prediction task. Gen-
Detect is used to discriminate between two possible contin-
uations of a prime, distinguishing a genuine continuation
from a generated one. Each musical excerpt is represented
by a collection of categorical distributions and a Gradient
Boosting Classifier is trained to predict the genuine con-
tinuation using this representation. Two versions of the
algorithm were submitted, one for polyphonic music and
another for monophonic music.

1. INTRODUCTION

The 2019 MIREX Patterns for Prediction task consists of
two sub-tasks. GenDetect is designed for the second sub-
task, which involves discriminating between two continu-
ations (Ma,Mb) of a prime Mprime. In contrast to Bach-
Prop [1], which ranks Ma and Mb) according to their
probability under a recurrent neural network that is trained
to model musical material, we train a Gradient Boosting
Classifier [3] to predict the genuine continuation given a
feature-based representation of Ma, Mb and Mprime. We
build on the data representation used by StyleRank, repre-
senting each musical excerpt (e.g. Ma) with a collection
of categorical distributions [2].

2. METHODOLOGY

In what follows we adopt the following notation. Given
a set x, ||x|| denotes the number of elements in the set x,
and xi denotes the ith element in x (1-indexed). max(x)
and min(x) denote the maximum and minimum elements
in x respectively. � indicates a left bitwise shift. I(·)
is a function that returns 1 if the predicate · is true and 0
otherwise. Let ⊕ denote the concatenation operation.

2.1 Data Representation

Consider a musical excerpt M = [m1, ...,mn], consisting
of n notes (mi) ordered lexicographically, sorting first by
onset and then by pitch height. Let P = [pitch(mi) :

c© Jeff Ens, Philippe Pasquier. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Jeff Ens, Philippe Pasquier. “Discriminating Symbolic Continua-
tions with GenDetect”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

1 ≤ i ≤ n] 1 , O = [qnt(ons(mi)) : 1 ≤ i ≤ n], and
D = [qnt(dur(mi)) : 1 ≤ i ≤ n], where pitch, ons
and dur are functions returning the pitch, onset and dura-
tion of a note respectively. qnt refers to Eq. (1), which
accepts time-based values (e.g. onset and duration) and re-
turns an integer rounded to the nearest rth subdivision of a
beat.

qnt(x) = dxr − 0.5e (1)

The following procedure is applied to segment M into
chords, where off(mi) = qnt(ons(mi) + dur(mi)).
First we construct two sets, one containing all unique note
onsets Bonset = {ons(mi) : mi ∈ M} and another con-
taining all unique note offsets Boffset = {off(mi) : mi ∈
M}. Then we construct the ordered set B = Bonset∪Boffset,
where the elements are arranged in ascending order. The
ith chord is the set of notes that completely overlap the
interval [Bi,Bi+1], and can be calculated using Eq. (2).
As a result, there are ||B|| − 1 chords in M, and rests are
equivalent to chords containing no notes (Ci = ∅). In
what follows, let Cj

i denote the jth note in the ith chord,
and ψ(Ci) = {pitch(Cj

i) : C
j
i ∈ Ci}. In addition , we

sort the notes in each chord in ascending order according
to pitch height.

Ci = {n : (n ∈M)∧(ons(n) ≤ Bi)∧(off(n) ≥ Bi+1)}
(2)

We use distinct pitch class sets (PCD) [2] to represent
pitched material, which reduces the 212 = 4096 possible
pitch class sets to 352 equivalence classes, grouping pitch
class sets that are transpositionally equivalent. For exam-
ple, the pitch class sets {0, 4, 7} and {2, 5, 10} are trans-
positionally equivalent, as both are major chords, the only
difference being their root. PCD(·) is a function that ac-
cepts a pitch class set and returns an integer corresponding
to the PCD. For more details on calculating the PCD, see
the original paper [2].

We represent each musical excerpt (M) by apply-
ing a non-empty set of feature transformations F =
{f1, ..., fd}, producing a set of categorical distributions
FM = {fM1 ..., fMd }. A categorical distribution is a discrete
probability distribution describing a random variable that
has k possible distinct states. Concretely, fMi = [fi(k) :
a ≤ k < b], where a and b are the upper and lower bounds

1 Note that we adapt the set-builder notation to construct a list (e.g.,
[i/2 : 0 ≤ i < 4] = [0, 0, 1, 1]), which unlike a set, may contain
duplicate values, and has a specific order.

Feature Name Function Domain
M

on
o. Chord Size ?

∑||B||−1
i=1 Ik(||Ci||)(Bi+1 − Bi) [0,2)

Melodic n-gram PCD
∑||P||−w+1

i=1 Ik(PCD({Pj mod 12 : i ≤ j < i+ w})) [0,352)

B
ot

h

Note Duration
∑||D||

i=1 Ik(Di) [0,16r)

Note Duration Difference
∑||D||−1

i=1 Ik(Di+1 − Di + 16r) [0,32r)

Note Offset
∑||O||

i=1 Ik((Oi + Di) mod 16R) [0,16R)

Note Onset
∑||O||

i=1 Ik(Oi mod 4R) [0,4r),

Note Onset Difference
∑||O||−1

i=1 Ik(Oi+1 −Oi) [0,16r)

Pitch Interval
∑||P||−1

i=1 Ik(Pi+1 − Pi + 128) [0,256)

Po
ly

ph
on

ic

Chord Duration ?
∑||B||−1

i=1 I(||Ci|| > 0)Ik(Bi+1 − Bi) [0,16r)

Chord Jaccard Distance
∑||B||−2

i=1 Ik
(⌈

(d− 1)
||ψ(Ci) ∩ ψ(Ci+1)||
||ψ(Ci) ∪ ψ(Ci+1)||

− 0.5
⌉)

[0,d)

Chord Onset
∑||B||−1

i=1 Ik
(∑||Ci||

j=1 (1� j)I(ons(Cj
i) = Bi)

)
[0,352)

Chord Onset ?
∑||B||−1

i=1 Ik
(∑||Ci||

j=1 (1� j)I(ons(Cj
i) = Bi)

)
(Bi+1 − Bi) [0,352)

Chord Onset Difference
∑||B||−1

i=1 Ik(Bi+1 − Bi + 128) [0,256)

Chord Onset PCD ?
∑||B||−1

i=1 Ik
(
PCD({pitch(x) mod 12 : (x ∈ Ci) ∧ (ons(x) = Bi)})

)
(Bi+1 − Bi) [0,352)

Chord Outer Interval
∑||B||−1

i=1 Ik
(
(max(ψ(Ci))−min(ψ(Ci))) mod 12

)
[0,12)

Chord PCD
∑||B||−1

i=1 Ik
(
PCD({pitch(x) mod 12 : x ∈ Ci})

)
[0,352)

Chord PCD ?
∑||B||−1

i=1 Ik
(
PCD({pitch(x) mod 12 : x ∈ Ci})

)
(Bi+1 − Bi) [0,352)

Chord Size ?
∑||B||−1

i=1 Ik(||Ci||)(Bi+1 − Bi) [0,12)

Note Pitch
∑||P||

i=1 Ik(Pi) [0,128)

Table 1. Formal definitions for the feature transformations used by monophonic, polyphonic and both models. ? denotes
feature transformations that are weighted by chord duration, using the term (Bi+1−Bi). The domain [a, b) sets the bounds
of the categorical distribution. In our implementation, we set d = 25 and r = 8.

of the domain respectively. The categorical distributions
in FM are concatenated, resulting in a single vector repre-
senting M, which we refer to as vF,M. Table 1 provides
formal definitions for each of the feature transformations
(fi), and specifies the domain used to construct the corre-
sponding categorical distribution (fMi). Note that in some
cases, the domain is dependant on the number of subdivi-
sions per beat (r). Let Ik(·) be a function that returns 1 if
· = k and 0 otherwise.

2.2 Training

Given a prime Mprime, and two possible continuations (Ma,
Mb), we train a Gradient Boosting Classifier [3] to pre-
dict whether Ma or Mb is the genuine continuation given
vMprime ⊕ vMa ⊕ vMb as input. Concretely, the classifier
is trained to output a 0 if Ma is the genuine continuation
and 1 otherwise. Notably, we were able to attain the same
level of accuracy by training a Gradient Boosting Classi-
fier to output 1 if the continuation (Mx) is genuine and 0
otherwise given vMprime ⊕ vMx as input.

The code was implemented in Python using the scikit-
learn module [4]. Notably, a model can be trained on
10, 000 training examples in several minutes on an Intel
Core i7-9700, which is much faster than training Bach-
Prop.

3. ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

4. REFERENCES

[1] Florian Colombo. Mirex 2018: Generating and
discriminating symbolic music continuations with
bachprop. https://www.music-ir.org/
mirex/abstracts/2018/FC1.pdf. Accessed
on August 19, 2019.

[2] Jeff Ens and Philippe Pasuier. Quantifying musical
style: Ranking symbolic music based on similarity to a
style. In ISMIR, page forthcoming, 2019.

[3] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

