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ABSTRACT

We describe the algorithm that we have submitted for the MIREX
2019 task of Automatic Lyrics-to-Audio Alignment. The goal is
to automatically detect word boundaries in English pop music
using an automatic speech recognition system, given the mixed
singing audio (singing voice + musical accompaniment) and lyrics
as inputs. The key component of the submission is the music-
aware acoustic models that learn music genre-specific character-
istics to train polyphonic acoustic models. With this genre-based
approach, we explicitly model the characteristics of music by us-
ing genre-specific acoustic models, instead of trying to suppress
the background music. Moreover, to account for the long dura-
tion vowels in singing, we have modified the lexicon with longer
duration vowel pronunciation variants. We use the final ASR to
forced-align lyrics-to-audio and obtain word boundaries. Exper-
imental results have shown that the proposed modifications pro-
vided considerable improvements in the alignment quality.

1. OVERVIEW AND MOTIVATION

In automatic speech recognition (ASR) tasks, word or phone-
level segmentation is obtained by forced-aligning the transcrip-
tion to the speech using acoustic models trained with speech data.
In this MIREX task, we apply the same concept to align lyrics to
music audio. However, since singing vocals in the presence of
background music is different from speech, we introduce music
related information to train acoustic models for this task.

Singing vocals are often highly correlated with the correspond-
ing background music, resulting in overlapping frequency com-
ponents [17]. To suppress the background accompaniment, some
approaches have incorporated singing voice separation techniques
as a pre-processing step [4,5,7,12]. However, this step makes the
system dependent on the performance of the singing voice sepa-
ration algorithm, as the separation artifacts may make the words
unrecognizable. Moreover, this requires a separate training setup
for the singing voice separation system. Recently, Gupta et al. [8]
trained acoustic models on a large amount of solo singing vo-
cals and adapted them towards polyphonic music using a small
amount of in-domain data – extracted singing vocals, and poly-
phonic audio. They found that domain adaptation with poly-
phonic data outperforms that with extracted singing vocals. This
suggests that adaptation of acoustic model with polyphonic data
helps in capturing the spectro-temporal variations of vocals +
background music, better than adaptation with extracted singing
vocals that introduces distortions.

Stoller et al. [18] presented a data intensive approach to lyrics
transcription and alignment. They proposed an end-to-end sys-
tem based on the Wave-U-Net architecture that predicts charac-
ter probabilities directly from raw audio. However, end-to-end
systems require a large amount of annotated training polyphonic
music data to perform well, as seen in [18] that uses more than
44,000 songs with line-level lyrics annotations from Spotify’s
proprietary music library. Unfortunately, publicly available re-
sources for polyphonic music are limited.
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Table 1. Training dataset description.
Name Content Lyrics Ground-Truth Genre distribution

DALI [13] 3,913
songs

line-level boundaries,
180,034 lines

hiphop:119,
metal:1,576, pop:2,218

Recently, a multimodal DALI dataset [13] was introduced,
that provides open access to 3,913 English polyphonic songs with
note annotations and weak word-level, line-level, and paragraph-
level lyrics annotations. In our recent work [9], we train genre-
informed polyphonic acoustic models for automatic lyrics tran-
scription and alignment using this openly available polyphonic
audio resource. In this work, instead of treating the background
music as noise that corrupts the singing vocals, we trained acous-
tic models induced with genre information that captured the acous-
tic variability across different genre, thus showing improvement
in both the tasks of lyrics transcription and alignment in poly-
phonic music. In this MIREX task, we submit the best perform-
ing system for the task of lyrics alignment from our work [9], that
we will briefly discuss in the next sections.

2. SYSTEM DESCRIPTION

2.1 Datasets
As shown in Table 1, the training data for acoustic modeling con-
tains 3,913 audio tracks. 1 English polyphonic songs from the
DALI dataset [13], consisting of 180,034 lyrics-transcribed lines
with a total duration of 134.5 hours.

Genre tags for most of the songs in the training dataset (DALI)
is provided in their metadata, except for 840 songs. For these
songs, we applied a state-of-the-art automatic genre recognition
implementation [1] which has 80% classification accuracy, to get
their genre tags. We applied the genre groupings from Table 2
to assign a genre broadclass to every song. The distribution of
the number of songs across genres in the training data is skewed
towards pop, while hiphop is the most under-represented. How-
ever, we are limited by the amount of available data available for
training, with DALI being the only resource. Therefore, we as-
sume this to be the natural occurring distribution of songs across
genres.

2.2 ASR Framework

The ASR system used in these experiments is trained using the
Kaldi ASR toolkit [14]. A context dependent GMM-HMM sys-
tem is trained with 40k Gaussians using 39 dimensional MFCC
features including the deltas and delta-deltas to obtain the align-
ments for neural network training. The frame rate and length are
10 and 25 ms, respectively. A factorized time-delay neural net-
work (TDNN-F) model [15] with additional convolutional lay-
ers (2 convolutional, 10 time-delay layers followed by a rank re-
duction layer) was trained according to the standard Kaldi recipe
(version 5.4). An augmented version of the polyphonic training
data (Section 2.1) is created by reducing (x0.9) and increasing
(x1.1) the speed of each utterance [10]. This augmented training
data is used for training the neural network-based acoustic model.

1 There are a total of 5,358 audio tracks in DALI, out of which only
3,913 were English language and audio links were accessible from Sin-
gapore.



The default hyperparameters provided in the standard recipe
were used and no hyperparameter tuning was performed during
the acoustic model training. The baseline acoustic model is trained
using 40-dimensional MFCCs as acoustic features. During the
training of the neural network [16], the frame subsampling rate is
set to 3 providing an effective frame shift of 30 ms. A duration-
based modified pronunciation lexicon is employed which is de-
tailed in [6].

2.3 Genre-informed acoustic modeling

Genre of a music piece is characterized by background instru-
mentation, rhythmic structure, and harmonic content of the music
[19]. Factors such as instrumental accompaniment, vocal harmo-
nization, and reverberation are expected to interfere with lyric in-
telligibility, while predictable rhyme schemes and semantic con-
text might improve intelligibility [2].

2.3.1 Genre-informed phone models

One main difference between genres that affects lyric intelligibil-
ity is the relative volume of the singing vocals compared to the
background accompaniment. For example, as observed in [2],
in metal songs, the accompaniment is loud and interferes with
the vocals, while is relatively softer in jazz, country, and pop
songs. Another difference is the syllable rate between genres.
In [2], it was observed that rap songs, that have a higher syllable
rate, show lower lyric intelligibility than other genres. We expect
that these factors are important for building acoustic models for
singing voice in polyphonic audio and hypothesize that genre-
specific acoustic modelling of phones would capture the com-
bined effect of background music and singing vocals, depending
on the genre.

2.3.2 Genre-informed “silence” models

In speech, there are long-duration non-vocal segments that in-
clude silence, background noise, and breathing. In an ASR sys-
tem, a silence acoustic model is separately modeled for better
alignment and recognition. Non-vocal segments or musical inter-
ludes are also frequently occurring in songs, especially between
verses. However, in polyphonic songs, these non-vocal segments
consist of different kinds of musical accompaniments that differ
across genres. For example, a metal song typically consists of a
mix of highly amplified distortion guitar, and emphatic percus-
sive instruments, a typical jazz song consists of saxophone and
piano, and a pop song consists of guitar and drums. The spectro-
temporal characteristics of the combination of instruments vary
across genres, but are somewhat similar within a genre. Thus, we
propose to train genre-specific non-vocal or “silence” models to
characterize this variability of instrumentation across genres.

2.3.3 Acoustic Models

We train 3 different types of acoustic models corresponding to
the three genre broadclasses (Table 2), for (a) genre-informed “si-
lence” or non-vocal models and (b) genre-informed phone mod-
els. We extract the non-vocal segments at the start and the end
of each line in the training data to increase the amount of frames
for learning the silence models. The symbols representing differ-
ent genre-specific silence models are added to the ground truth
training transcriptions so that they are explicitly learned during
the training phase. For the genre-informed phone models, we
append the genre tag to each word in the training transcriptions
of the corresponding genre songs. These genre-specific words
are mapped to genre-specific phonetic transcriptions in the pro-
nunciation lexicon which enables learning separate phone models
for each genre. For the alignment task, we use the same genre-
informed phone models that are mapped to the words without
genre tags, i.e. the alignment system chooses the best fitting
phone models among all genres during the forced alignment, to
prevent the additional requirement of genre information for songs
in the test sets.

3. RESULTS

Lyrics alignment shows an improvement in performance with genre-
informed silence + phone models over those with no genre info

Table 2. Genre broadclasses grouping
Genre

Broadclasses Characteristics Genres
hiphop rap, electronic music Rap, Hip Hop, R&B

metal

loud and many background
accompaniments, a mix of percussive
instruments, amplified distortion, vocals
not very loud, rock, psychedelic

Metal, Hard Rock,
Electro, Alternative,
Dance, Disco,
Rock, Indie

pop
vocals louder than the background
accompaniments, guitar, piano,
saxophone, percussive instruments

Country, Pop, Jazz,
Soul, Reggae, Blues,
Classical

Table 3. Comparison of lyrics alignment (mean absolute word
alignment error (seconds)) performance with existing literature.

Test MIREX 2017 MIREX 2018 ICASSP 2019 Interspeech2019
Datasets AK [11] GD [3, 4] CW [20] DS [18] CG [7] CG [8] Ours [9]
Mauch 9.03 11.64 4.13 0.35 6.34 1.93 0.21
Hansen 7.34 10.57 2.07 - 1.39 0.93 0.22

Jamendo - - - 0.82 - - 0.22

and genre-informed silence models [9]. The mean absolute word
alignment error is less than 220 ms across three test datasets –
Hansen 2 , Mauch, and Jamendo. This indicates that the genre-
informed phone models trained on limited data are able to capture
the transition between phones well. We compare our best results
with the most recent prior work (Table 3), and find that our strat-
egy provides the best results for lyrics alignment on the three test
datasets. Our proposed strategies show a way to induce music
knowledge in ASR to address the problem of lyrics alignment in
polyphonic audio.
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