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ABSTRACT

This paper describes models used for audio classification
task of the Music Information Retrieval Evaluation eX-
change (MIREX) 2019. We recently proposed a novel con-
volutional recurrent neural networks (CRNNSs) architecture
named temporal feedback CRNNs (TF-CRNNs) for key-
word spotting [4]. The architecture is inspired by efferent
connections in the human auditory system, which is the
feedback pathway from the brain to ears. Experimental re-
sults show that the models are effective for keyword spot-
ting. In this paper, to further explore the capability of TF-
CRNNSs, we also evaluate the TF-CRNNs on music genre
classification in this study.

1. INTRODUCTION

One of goals in deep learning is to reduce domain knowl-
edge required for a task. However, when a neural network
architecture is designed, domain knowledge is often lever-
aged. A method often used as domain knowledge is utiliz-
ing the brain mechanism. In our previous study, we also
proposed a novel convolutional recurrent neural networks
(CRNN:s) architecture inspired by efferent connections in
the human auditory system, which is the feedback pathway
from the brain to ears [4].

2. ARCHITECTURE

The proposed architecture named temporal feedback
CRNN (TF-CRNN) has temporal feedback connections
that are conceptually analogous to the mechanism of the
outer-hair cells [5]. More specifically, a temporal feed-
back connection is a connection from a hidden state of a
recurrent neural network (RNN) at the previous time step
h*~! to a convolutional block at the current time step h'
as illustrated in Figure 1. The feedback signal is used to
scale features extracted from the convolutional block in a
channel-wise manner. Figure 2 describes a convolutional
block in the TF-CRNN. The channel-wise feature scaling
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Figure 1. The architecture of temporal feedback CRNNs
(TF-CRNNSs). The number of convolutional filters are de-
noted in the boxes.

weights are computed by a fully connected (FC) layer us-
ing the temporal feedback.

3. EXPERIMENTAL SETUP
3.1 Dataset

A medium size split of FMA dataset [2] is used for mu-
sic genre classification, which contains 84,337 / 10,957
/ 11,262 (training / validation / test split) tracks in total
25,000 tracks of a length of 30 seconds and 16 genres
which are used as target classes.

3.2 Implementation details

Raw waveforms are directly used as inputs for the mod-
els. An audio track is divided into 2.5 second segments
for training the models. In the test phase, the model pre-
dictions are summarized over the track length. All filters
and max pooling layers have a size of 3. Gated Recurrent
Units (GRUs) [1] are used to implement RNNs of which
weights are initialized with zeros. The models are trained
using stochastic gradient descent with Nesterov momen-
tum of 0.9 with a batch size of 23.
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Figure 2. A convolutional block of TF-CRNNs taking the
temporal feedback as an input. The feedback signal is used
for channel-wise feature scaling. C' and 7" indicate channel
and time dimensionality, respectively.

Table 1. Performances of models on music genre classifi-
cation. The results are averages of 3 experiments. Standard
deviations are denoted in parentheses.

Model Accuracy
CRNN 0.6078 (0.0101)
TF-CRNN 0.6117 (0.0060)
SampleCNN [3] 0.6314 (0.0119)
HC-features+SVM [2]  0.6300 (-)

4. RESULTS

We evaluate CRNNs without temporal feedbacks and
TF-CRNNs on music genre classification and compare
them with other approaches. Table 1 summarizes the re-
sults. The temporal feebacks improve the performance of
CRNNs on music genre classification as same as on key-
word spotting. However, TF-CRNNs could achieve the
state-of-the-art performances on keyword spotting in our
previous study, but not on music genre classification.
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