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ABSTRACT

This extended abstract describes the SJB1 − 4 submis-
sion for the MIREX multiple-f0 estimation challenge. The
model utilized here is an echo state network (ESN), a varia-
tion of recurrent neural networks (RNNs). The fundamental
difference to typical RNN architectures is that the input
weights and the recurrent connection weights are initialized
by random values, and only the output weights are trained
using linear regression. Input to the ESN were spectral
feature vectors, calculated with a bank of logarithmically-
spaced frequency filters, normalized over time. The normal-
ized feature vectors were fed into the ESN, which computed
an output vector each MIDI pitch and an additional silence
output. This was a representation for the pitch and silence
states for each frame. All pitch states above a global thresh-
old represented active pitches and vice versa.

1. INTRODUCTION

The fundamental frequency f0 is the smallest noticable
frequency in a quasiperiodic signal, and related to the per-
ceived pitch p. Detecting the f0 in a speech signal is nowa-
days a well-investigated task. Algorithms implemented in
software packages, such as Praat [1] or RAPT [8], as well
as YIN-based techniques [2, 5, 7] are able to extract the f0
of speech or monophonic musical instruments without a
high computational complexity and without the need for
training data.

In music, however, multiple sources can be active at the
same time, and each source has its own f0. Thus, the goal
of algorithms for multiple-f0 extraction is to extract all f0
values present at any time. Main challenges in developing
such algorithms are unknown polyphony (number of active
notes or sources during the same time), different and un-
known instruments, and fast note transitions. A common
way of simplifying this task is to map the f0 values to a
reduced set of center frequencies of the notes in the western
music. In this context, multiple-f0 estimation can also be
considered as a multilabel classification, where each note is
a separate class.
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Echo State Networks (ESNs) by Herbert Jaeger [3] are
a special kind of Recurrent Neural Networks (RNNs) and
have achieved comparable results to CNNs in several recog-
nition tasks, such as speech and image recognition [4, 10].
However, they are fairly new in the context of Music Infor-
mation Retrieval (MIR). Encouraged by the positive per-
formance in various research areas, this work explored the
potential of ESNs for the challenging task of multiple-f0
estimation. ESNs have some beneficial properties for this
task:

• They are suitable for processing temporal informa-
tion due to recurrent connections, and the training
procedure is much easier than concurrent approaches
due to less free parameters.

• They are quite robust against noise and unseen condi-
tions.

• Since the input dimension has minimum (almost non)
impact on the complexity of the model, they are in-
teresting candidates for processing high dimensional
data.

2. MULTIPLE F0 ESTIMATION WITH ECHO
STATE NETWORKS

The main outline of our proposed ESN-based model for
multiple-f0 estimation is depicted in Figure 1. All Figures,
explanations and Tables are taken from a paper that will be
published shortly. [6]

2.1 Echo State Network (ESN)

The main outline of an ESN is depicted in the center of
Figure 1. It consists of the input weights Win, the reservoir
weights Wres and the output weights Wout.

The input weight matrix Win has the dimension of
N in × N res where N in = 512 and N res are the size of
the input feature vector and the size of the reservoir, re-
spectively. All values in this matrix were initialized from a
standard normal distribution. Next, each node of the reser-
voir was only connected to K in = 10 randomly selected
input entries. The other connections were set to zero, lead-
ing to a very sparse matrix Win. The input weight matrix
was then scaled using the input scaling factor αU, which
was a hyper-parameter to be tuned.
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Figure 1: Outline of the ESN-based proposed model: The input signal s[k] with the sample index k was divided into
overlapping frames, from which normalized feature vectors u[n] were extracted and fed into the reservoir using the input
weight matrix Win. The reservoir consists of unordered and via the reservoir matrix Wres sparsely connected neurons. The
output vector y[n] with Nout = 129 dimensions is a linear combination of the reservoir states r[n] and the output weight
matrix Wout, which was trained using linear regression. Each component of the output vector y[n] corresponded to one
musical note, and one additional component to silence. Using a threshold, the output was converted to a binary sequence of
notes p[n].

The reservoir weight matrix Wres is a square matrix of
the size N res × N res, which was also initialized from a
standard normal distribution. Each reservoir node received
values from only Krec = 10 randomly selected other nodes.
The other connections were set to zero. The reservoir matrix
Wres was normalized by its largest absolute eigenvalue to
achieve a spectral radius ρ = 1.0, because it was shown
in [3] that the echo state property holds as long as ρ ≤ 1.0.
By tuning αU and ρ, it is possible to balance, how strongly
the network memorizes past inputs compared to the present
input.

If r[n] represents the reservoir state, the basic equations
to describe the ESN can be written in the following way:

r[n] = (1− λ)r[n− 1] + λfres(W
inu[n] +Wresr[n− 1])

(1)

y[n] = Woutr[n]
(2)

Equation (1) is a leaky integration of the reservoir neu-
rons. Depending on the leakage λ ∈ [0, 1], the reservoir
can act as a long-term or a short-term memory. The reser-
voir activation function fres(·) controls the non-linearity of
the system. Here, the tanh-function was used, because its
lower and upper boundaries of ±1 ensure stable reservoir
states.

Equation (2) shows how to compute theNout-dimensional
output vector y[n] from a given reservoir state r[n], which
was expanded by one bias term. The hyper-parameter αB

was used to scale the impact of this bias term. The output is
obtained by a linear combination of the reservoir state and
the output weight matrix Wout. For training, all reservoir
states were collected in the reservoir state collection matrix
R, and expanded by one bias term.The desired output vec-
tors d[n] were collected into the desired output collection
matrix D. Afterwards, Wout was obtained using regular-
ized linear regression (3), i.e. ridge regression to prevent
overfitting to the training data. The regularization parameter
ε = 0.0001 penalized large values in Wout, and I is the
identity matrix.

Wout =
(
RRT + εI

)−1
(DRT) (3)

2.2 Bidirectional and stacked reservoirs

In the case of bidirectional reservoirs, the input was first
fed through the ESN as described before. Before the linear
regression, the inputs were reversed in time, and again fed
into the same reservoir. Afterwards, the reservoir states
were again reversed in time. The reservoir state collection
matrix R was finally built by combining the states from the
forward and backward pass. This doubled the number of
free parameters for the linear regression. For example, the
number of features for a reservoir with 500 neurons is 500
in the unidirectional and 1000 in the bidirectional case. The
final training remained the same as before.

In the case of stacked reservoirs, the layers were trained
sequentially using the same desired outputs in every layer.
After fixing the hyper-parameters for one layer, the output
of that served as the input for the next layer. By stacking
reservoirs, some mistakes from one layer can be corrected
in the next layer, because it offers additional temporal mod-
eling capacity. This can be done for unidirectional as well
as for bidirectional reservoirs.

3. EXPERIMENTAL SETUP

3.1 Dataset

To evaluate the capabilities of Echo State Networks to tran-
scribe music, the recently introduced MusicNet database [9]
was used, which is the largest freely available database. It
contains in total 330 classical music recordings, using 11
different instruments. All recordings are mono audio files
and sampled with fs = 44 100Hz. In total, there are more
than 30 h of music with sample-based annotations for in-
struments, notes and more.

The MusicNet is by default split into a 320 training and
10 test files. The hyperparameters were tuned solely on the
training set, and the test files were just used one time in the
end to report measurements.



3.2 Optimization

The algorithm was developed in Python 3, and was based
on [4]. Table 1 shows the optimized hyper-parameters for
the uni- and bidirectional models with one and two layer
architectures.

Hyperparameter Final values
Layer 1 Layer 2

Input scaling αU 0.1 1.9
Spectral radius ρ 0.8 0.1

Bias scaling αB
1.8 (u)

1.35
0.85 (b)

Leakage λ 0.1 0.2

Threshold δ 0.35

Table 1: Overview over all hyperparameters that were
trained with the MusicNet dataset. The final values of every
model were fixed for the evaluation. The optimization lead
to equal values for unidirectional (u) and bidirectional (b)
reservoirs for all hyper-parameters but for the bias scaling
αB in layer 1.

4. RESULTS

Table 2 presents the recognition results of the proposed
algorithm with a reservoir size of 20 000. The results show
that the bidirectional structure improved the recognition
result, because this almost doubled the number of free pa-
rameters for the regression. Because of the large dataset,
this did not lead into overfitting. The system using two lay-
ers with 20 000 reservoir neurons each in the bidirectional
configuration is the best performing system for now.

Method P R F

1 layer uni SJB1 69.05 70.02 69.53
1 layer bi SJB2 69.13 72.20 70.63
2 layer uni SJB3 66.43 76.55 71.13
2 layer bi SJB4 66.86 77.93 71.98

Table 2: P , R and F for different algorithms evaluated on
the test set of the MusicNet.
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