COPYFORWARD: POINT-SET MATCHING FOR PREDICTING
PATTERNS

Timothy de Reuse
Centre for Interdisciplinary Research in Music Media and Technology
McGill University
timothy.dereuse@mcgill.ca

ABSTRACT

This document describes CopyForward, an algorithm sub-
mitted to the 2019 MIREX task on Patterns for Prediction,
for the symbolic polyphonic and symbolic monophonic ver-
sions of subtask 1, which involves predicting the continua-
tion of a given excerpt of music. CopyForward is a simple
point-matching algorithm that predicts the continuation of
an excerpt of music by selecting a section of the excerpt,
copying it, and translating the copy to the end of the ex-
cerpt. Its limitations are discussed, as well as possible av-
enues for improvement.

1. INTRODUCTION

A stated goal of the Patterns for Prediction MIREX task is
“to interrogate the idea that patterns are abundant in music
and always informative in terms of predicting what comes
next” [3]. The CopyForward' algorithm addresses this
idea directly, motivated by the geometric pattern-matching
approaches to pattern discovery used by algorithms like
COSIATEC [2]. In contrast to previous entries to this task,
this model searches explicitly for patterns in its input data;
it uses no machine learning techniques, knows nothing of
tonal expectations or musical convention, and relies en-
tirely on the assumption that future events will be repeti-
tions of events that have already happened. The algorithm
is designed to run on . csv files containing lists of (note
onset time, MIDI note number) pairs, ignoring the other
per-note fields included in the Patterns for Prediction De-
velopment Dataset (PPDD). It is also agnostic to whether
its input is monophonic or polyphonic, so the same code
can be used for both tasks.

Training neural networks to learn from and predict long-
term dependencies is a notoriously difficult problem [1]. It
is hoped that this simple algorithm might prove a useful
benchmark against which more sophisticated algorithms
can be judged; intuitively, an algorithm that can learn to
detect and replicate patterns in a rather naive way ought to
do at least as well as CopyForward.

lgithub.com/timothydereuse/copy-forward

This document is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

(© 2010 The Authors.

2. ALGORITHM DETAILS

The assumption underpinning CopyForward is that most
input primes contain their continuations, and so the act
of predicting future events can be reduced to choosing an
excerpt from the prime and translating it forward in time
(and, optionally, transposing it up or down in pitch). In
effect, the task has been reduced to finding a single vector
which defines a region of the prime to copy as a contin-
uation. Given a desired continuation length ¢, a window
length w < ¢, and a prime represented as a series of (note
onset time, MIDI note number) pairs, where all its events
lie between pgtqr¢ and Pena:

1. Split the prime into two parts: the events which lie
after penq — w (the fixed window), and all preceding
events (the sliding window).

2. Find a vector v € Z? such that translating the slid-
ing window by v maximises the number of coincid-
ing points between the sliding window and the fixed
window.

3. After translating the sliding window, extract all points
that lie between p.,,q and p.nq + ¢; this new set of
points is the predicted continuation of the prime.

The algorithm as submitted contains other pre-processing
steps and failsafes in place to avoid degenerate solutions.
First, it multiplies all time values by 12 and then quantizes
to the nearest integer to ensure that no errors are caused
by floating-point inaccuracies. On output all time values
are divided by 12 and rounded to five decimal places, to
match the convention of the PPDD. In the scenario where
DPend — Pstart < C, the prime is assumed to repeat back-
wards in time indefinitely. It is also possible for the pre-
dicted continuations to contain just one event for certain
inputs; when the fixed window is sparsely populated with
events, the best possible translation vector v might be very
small, shifting few events from the prime into the range
(Pend, Pend+¢). These cases are exceptionally rare, and on
encountering them the continuation is filled with a series of
“dummy”’ notes so as not to produce an empty output.

For this MIREX task, the value for ¢ has been set to ten
quarter-note beats, so the only parameter left to set in this
algorithm is the size of the fixed window w. Brute-force
testing over a range of choices for w showed that using
a window size of 8 quarter-note durations is moderately

Polyphonic Monophonic
Algorithm Recall Precision F1 Recall Precision F1
CopyForward 0.451 0.463 0.445 | 0.496 0.503 0.493
CopyForward with “cheating” | 0.562 0.553 0.547 | 0.645 0.644 0.638

Table 1. The results of evaluating CopyForward on the polyphonic and monophonic versions of PPDDs. The scoring
system here is the cardinality score, as defined in the guidelines for the MIREX task; results are the average over 1000
randomly selected entries from the monophonic and polyphonic versions of the PPDD.

more successful than shorter or longer windows in evalua-
tion on the PPDD for both the monophonic and polyphonic
data, so this is what the parameter is set to in the submis-
sion.

To get a sense of the limits of this approach, we also
evaluate using a method that can “cheat” by finding the
translation vector v that results in the highest number of
coinciding points between the sliding window and the true
continuation. A comparison between this method and the
submitted version of CopyForward is shown in Table 1.
The results represent the best possible performance for any
algorithm which assumes the continuation to be an unedited
repetition of material from somewhere in the prime.

3. DISCUSSION

Compared to results from 2018, the only previous year
when this task was run, CopyForward performs similarly
to the first-order Markov model baseline on the monophonic
task, but significantly better than the Markov model and
the one other submission on the polyphonic task (assum-
ing that the test results from that year can be compared di-
rectly with evaluation results on the PPDD). On both tasks,
however, CopyForward performs significantly worse than
than the “cheating” method, indicating that a more sophis-
ticated method of choosing the translation vector v could
still lead to significant gains in performance.

It is worth noting here a few of the techniques attempted
during the development of this algorithm that did not im-
prove its performance. Splitting each prime into its con-
stituent MIDI channels and recombining the individual pre-
dicted continuations for each channel resulted in some pre-
dicted continuations becoming more accurate but an equal
amount becoming less accurate. A variety of different sim-
ilarity functions were also tested out, with the rationale that
perhaps maximising some metric of similarity between the
fixed window and sliding window other than simple point-
wise overlap would result in better performance; these ef-
forts also generally performed worse than the simple method
described here.

These failed efforts lead to the hypothesis that at least
some of the discrepancy between the current performance
of CopyForward and its “ideal” performance is unavoid-
able. On primes whose true continuations are not at all
repetitions of content contained in the prime, there likely
exist translation vectors that result in some amount of over-
lap just by pure chance; however, it would be nearly im-
possible to identify these vectors by looking only at the
prime. While some improvement to this algorithm is pos-

sible, there is likely a limit to how much better it can be
without using more sophisticated methods capable of in-
corporating information on musical style and tonal expec-
tations.

4. REFERENCES

[1] Hochreiter, Sepp, Yoshua Bengio, Paolo Frasconi,
and Jirgen Schmidhuber. “Gradient Flow in Recur-
rent Nets: The Difficulty of Learning Long-term De-
pendencies.” In Stefan C. Kremer & John. F. Kolen
(Eds.) A Field Guide to Dynamical Recurrent Neural
Networks. IEEE Press, 2001.

[2] Meredith, David. “COSIATEC and SIATECCompress:
Pattern Discovery by Geometric Compression.” In Pro-
ceedings of the 14th International Society for Mu-
sic Information Retrieval Conference, Curitiba, Brazil,
2013.

[3] The MIREX Wiki. “2019:Patterns for Prediction.”
www.music—-ir.org/mirex/wiki/2019:
Patterns_for_ Prediction. Accessed 8 Septem-
ber 2019.

