
POLYPHONIC MUSIC SEQUENCE CLASSIFICATION WITH LSTM
NETWORKS

Adrien Ycart Emmanouil Benetos
Centre for Digital Music, Queen Mary University of London
{a.ycart/emmanouil.benetos}@qmul.ac.uk

ABSTRACT

We describe our submission for the symbolic polyphonic
Patterns for Prediction MIREX task (subtask 2). Our sys-
tem is a simple LSTM model trained for prediction. We
investigate more specifically the use of various newly pro-
posed metrics as training losses and classification criteria.
We also propose to train our model in a multi-task fashion
for both prediction and classification.

1. INTRODUCTION

We aim to evaluate the ability of a simple music language
model (MLM), similar to the one presented in [3], to dis-
criminate between real and fake polyphonic music sequences.
The general idea is that our model should be better at mod-
elling the data it was trained on, in our case, real music
sequences, than the fake continuations. The model should
thus yield better results, according to some metric, when
evaluated on the real data than on the fake. We focus our
proposal on the comparison of various metrics as training
losses and classification criteria. The metrics are defined
in Section 3. A summary of the submitted combinations is
given in Table 1.

2. SYSTEM OVERVIEW

2.1 Input format

Out model takes as input a piano-roll matrix, in other words,
a binary matrix M of shape N × T , such that Mp,t = 1
if and only if pitch p is active at timestep t. In particular,
we make no distinction between held and repeated notes.
Here, we choose N = 128, to be able to represent every
MIDI pitch. Each piano roll is the concatenation of a prim-
ing piano roll and a continuation piano roll (either real or
fake).

2.2 Model Architecture

We use a simple configuration of the most widely-used
RNN unit: the Long Short-Term Memory (LSTM) [1]. We
use a single layer with 128 inputs and 256 hidden units, fol-
lowed by a dense layer with 128 outputs. We use sigmoid

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
c© 2010 The Authors.

activations for the dense layer. We call M̂ the non-binary
matrix corresponding to the outputs of the network.

2.3 Training setups

2.3.1 Prediction only

In this setup, we train our model on a simple prediction
task, as commonly done in natural language processing.
Let Mt be the 128-vector corresponding to time frame t of
M , given (Mt)t∈J0,n−1K, the model tries to predict Mn.
Given a metric Mpred, the network minimises the loss
Lpred = Mpred(Mreal, M̂real) where Mreal is a real pi-
ano roll. Here, the network simply tries to model the real
data, and doesn’t use the fake data.

2.3.2 Prediction + Classification

In this setup, we train our model in a multi-task fashion:
the model has to predict the next frame of the real data, and
also to discriminate correctly between real and fake data.
LetMclass be a metric, the classification output C is de-
fined as a vector of size 2 such that : C0 =Mclass(Mreal, M̂real)
and C1 =Mclass(Mfake, M̂fake), where Mreal and Mfake

are a real and a fake piano roll respectively. Let S be
the softmax function, we then define Lclass as the cross-
entropy between S(C) and the labels [1, 0]. We then use
Lpred + Lclass as training loss.

3. METRICS

We define a set of metrics that can be computed on each pi-
ano roll. These can then be used either as training objective
or as classification criterion. All the newly proposed met-
rics (Sections 3.2 to 3.7) will be defined and investigated
in [4].

3.1 Cross-entropy

We use the usual definition of cross entropy. Let M̂t =(
M̂t,p

)
p∈J0,87K be the sigmoid output of our network at

timestep t, and Mt =
(
Mt,p

)
p∈J0,87K the binary targets at

the same timestep. The cross entropyH(Mt, M̂t) between
the vectors Mt and M̂t is defined as:

H(Mt, M̂t) = −
∑

p∈J0,127K

Mt,p log(M̂t,p)+(1−Mt,p) log(1−M̂t,p)

(1)

Submission ID Training setup Prediction loss Classification loss Classification criterion
YB1 Prediction only H - H
YB2 Prediction only H - Htr

YB3 Prediction only H - S
YB4 Prediction only S - S
YB5 Prediction + Classification H Htr Htr

Table 1. Summary of the submitted systems. The definition of the losses and criteria is given in Section 3.

The cross entropy H(M,M̂) is defined as the average
of the cross entropy across timesteps.

3.2 Transition Cross entropy

A good model must be able to successfully predict transi-
tions, not only continuations of notes.. In order to evaluate
this ability separately, we compute the cross entropy only
on frames where there is a transition.

For a given M , let Tr be the subset of J1, T − 1K such
that:

t ∈ Tr ⇔Mt 6= Mt−1 (2)

For each t ∈ Tr, we define d(t) the number of bins
that differ between Mt and Mt−1. In other words, d(t) =
‖Mt −Mt−1‖0. We define the transition cross entropy as:

Htr =
1

|Tr|
∑
t∈Tr

H(Mt, M̂t)

d(t)
(3)

where |.| denotes the cardinality. We divide by d(t) as we
observe experimentally that H(Mt, M̂t) is proportional to
d(t). Indeed, as the models have a tendency to repeat the
previous input, each note that differs from the previous in-
put will be an additional source of errors.

3.3 Steady-state Cross entropy

Transition cross entropy evaluates the ability of an MLM
in the difficult cases. Still, we expect an MLM to perform
also well in the simple cases, that is, when notes are held
(or repeated). We thus define the steady-state cross entropy
as :

Hss =
1

T − 1− |Tr|
∑

t∈J1,T−1K\Tr

H(Mt, M̂t) (4)

Here, we do not normalise by the number of active note
as it has no influence on the cross entropy value. What
matters is the fact that the previous frame is repeated, not
which notes are active in that frame.

3.4 Pitch-profile Cross entropy

We introduce the pitch-profile cross entropy. It basically
assesses how relevant to the piece the erroneous outputs of
the system are.

Usually, a scale is defined as a subset of the 12 notes of
the chromatic scale. In particular, the scale of a piece is
invariant across octaves. In our case, we define the scale
of a piece as the set of MIDI pitches (not pitch classes)

that are common in a piece. We consider that a pitch is
in the scale of the piece if it is active for more than 5% of
the duration (in seconds) of the example. This allows us to
remove accidentals and ornaments. The pitch-profile of a
piece P(t) is then defined as:

p ∈ P(t) ⇐⇒ 1

T

∑
t<T

M(t, p) > 0.05 (5)

We subsequently define a scale vector P (t) such that
P (t)p = 1 ⇐⇒ p ∈ P(t). It has to be noted that we
use the same P (t) when evaluating the real and fake piano
rolls, computed from the real one only.

We only want to evaluate how close to the scale the erro-
neous predictions are. Indeed, our focus here is to measure
to what extent the false positives, despite being mistakes,
make sense from a musical point of view. In order to get
rid of the influence of the correct notes, we do not consider
in the computation of the pitch-profile cross entropy the
bins where the target is equal to 1. We call the ensemble of
such bins B:

B = {(p, t) ∈ J0, 127K× J1, T − 1K |Mt,p = 0} (6)

The pitch-profile cross entropy is then defined as the
cross entropy between the false positive outputs and the
scale, counting only the false positive bins.

For a given bin (p, t), the pitch-profile cross entropy is
given as:

Hpp(p, t) = −P (t)p log(M̂t,p)−(1−P (t)p) log(1−M̂t,p)
(7)

We then define the pitch-profile cross entropy for a pi-
ano roll as follows:

Hpp =
1

|B|
∑

(p,t)∈B

Hpp(p, t) (8)

3.5 Transition-Pitch-profile Cross entropy

We define the transition-pitch-profile cross entropy. It is
defined similarly as the pitch-profile cross entropy, but is
only computed on transition frames. We call Bt the subset
of pitches such that Bt = {p ∈ J0, 127K | (t, p) ∈ B}. We
then have:

Hpp,tr =
1∑

t∈Tr |Bt|
∑

t∈Tr,p∈Bt

Hpp(t, p) (9)

3.6 Steady-State-Pitch-profile Cross entropy

By analogy with Hss(see Section 3.3) , we also define the
steady-state-pitch-profile cross entropy:

Hpp,ss =
1∑

t 6∈Tr |Bt|
∑

t6∈Tr,p∈Bt

Hpp(t, p) (10)

3.7 Proposed unified metric

All the proposed metrics capture different aspects of the
performance of an MLM, similarly to precision and recall
for classification: Htr focuses on transitions, Hss on con-
tinuations, whileHpp,Hpp,tr andHpp,ss focus on tonality.
Optimising a model for only one of them can lead to un-
desired behaviour, but they all capture some good aspects
of a model. In order to have one single measure to indicate
the fitness of a model, similarly to F-measure, we propose
a unified metric that combines the above proposed metrics.

The metric we propose, for which lower is better, is de-
fined as:

S =
√
(Htr +Hss)(Hpp,tr +Hpp,ss) (11)

By summing Htr and Hss, we take into account all the
time-frequency bins, as in H, but with a different weight-
ing. Here, the sum of steady-state frames and the sum of
transition frames have the same weight overall, contrary
to H, where all frames have the same weight. As a re-
sult, when transitions are rare (as is the case here), they
have a much higher weight with this metric than with H,
which helps put the emphasis on the difficult parts. Sim-
ilarly, summing Hpp,tr and Hpp,ss allows to evaluate all
bins with respect to the pitch-profile, but gives more weight
to the rarer type of frames.

4. EXPERIMENTS

4.1 Dataset

To train our network, we use the provided dataset: PPDD-
Sep2018 sym poly medium. This dataset contains 1000
triplets (priming sequence, real continuation, fake continu-
ation). We split it into training and validation subsets(80%
and 20% of examples respectively). We test our systems on
1000 randomly chosen examples from the dataset PPDD-
Sep2018 sym poly large (we use the same test set to com-
pare all configurations). Although there is no guarantee
that there is no overlap with the training set, we assume
that this is unlikely given the way the datasets were built.
We give more importance to having enough test samples to
avoid sample bias.

The data is converted to piano-roll format, using a timestep
of a 48th note (a 12th of a quarter note), which is the small-
est common multiple of all the durations present in the
dataset. All MIDI channels are collapsed into one single
matrix. For each example, we have one real piano roll and
one fake piano roll.

To improve transposition invariance, we also augment
our dataset by transposing every training example up to 2

Submission ID Accuracy (%)
YB1 42.6
YB2 66.0
YB3 64.0
YB4 61.8
YB5 69.6

Table 2. Preliminary results, with best values in bold.

semitones up or down. For each example, the real and fake
continuations are transposed identically.

4.2 Training setup

We use the Adam optimiser [2] to train our model, with a
learning rate of 0.01. We also use early stopping, such that
if the loss evaluated on the validation set hasn’t decreased
for 15 epochs, we stop training and keep the best model so
far.

4.3 Preliminary results

We run a range of experiments with the various configura-
tions presented in Table 1. YB1 is the default configura-
tion. With YB2 and YB3, we investigate other metrics as
classification criterion, using the same trained model. With
YB4, we investigate the effect of training our model with
S instead of the usualH. Preliminary experiments showed
that the best results were obtained with YB2, so we try to
push performance further by adding a classification train-
ing objective, usingHtr as classification function.

In each configuration, for each example, we compute
vreal =M(Mreal, M̂real) and vfake =M(Mfake, M̂fake),
whereM is the classification criterion. We count a correct
classification when vreal < vfake. The reported accuracy
is the percentage of correct classifications. The results are
summarised in Table 2.

4.4 Output normalisation

For the purpose of this submission, we need to have vreal
and vfake between 0 and 1. We thus divide these two val-
ues by their sum vreal + vfake. As Mreal and Mfake only
differ by the continuation sections, they tend to yield very
similar values. To spread them out, we normalise them so
the biggest distance between vreal and vfake in the dataset
is 1. Eventually, we have (with v ∈ {vreal, vfake}):

output =

v
vreal+vfake

− 0.5

max(
|vreal−vfake|
vreal+vfake

)
+ 0.5

It can happen that S(M,M̂) is ill-defined, for instance
when there are not steady-state frames. In this case, we
count it as an incorrect classification, and we output nomi-
nal values vreal = vfake = 0.5

5. REFERENCES

[1] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[2] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In 3rd International Conference on
Learning Representations (ICLR), 2015.

[3] A. Ycart and E. Benetos. A study on LSTM networks
for polyphonic music sequence modelling. In 18th In-
ternational Society for Music Information Retrieval
Conference (ISMIR), pages 421–427, 2017.

[4] Adrien Ycart and Emmanouil Benetos. Defining New
Metrics for Music Language Modelling. In Prepara-
tion, 2019.

